
Universidad de Extremadura

Escuela Politécnica de Cáceres

Algorithms for efficient computation

of generalized

Inverse Kinematics in humanoid robots

Pedro Yuste Gallego

2014

Grado de Ingeniería de Sonido e Imagen en Telecomunicación

Universidad de Extremadura

Escuela Politécnica de Cáceres

Grado en Ingeniería de Sonido e Imagen en Telecomunicación

Trabajo Fin de Grado

Algorithms for e�cient computation of generalized

Inverse Kinematics in humanoid robots

Author: Pedro Yuste Gallego

Director: Dr. Pedro M. Núñez Trujillo

Director: Dr. Carmen Ortiz Caraballo

• Quali�er Committee

� President: Mr. Jesús Rubio Ruiz

� Secretary: Mrs. Rosa María Navarro Olmo

� Chair: Mr. Pablo Bustos García de Castro

Al extinto Colegio Mayor Francisco de Sande,

a mi abuelo Pepe.

�We must maintain that mathematical geometry

is not a science insofar as we understand

by space a visual structure that can be

�lled with objects, it is a pure

theory of manifolds�.

- Hans Reichenbach (1891-1953) -

- The Philosophy of Space and Time -

Abstract

The following document is intended to describe what is hidden behind the Inverse

Kinematics problem and all the knowledge which is needed to explain it. In order

to accomplish this purpose, the main mathematical concepts and their application

to engineering will be developed in detail. Nevertheless, since the whole process

required to characterize a spatial movement is really complex, some simpli�cations

and middle steps must be treated before. Taking this reason into account, many

examples have been included along this work to make the understanding easier when

progressing.

Finally, the basic ideas named above will be extended by applying some improve-

ments on the conventional systems. To achieve it, di�erent numerical methods or

mathematical possibilities will also be introduced and brie�y discussed.

Contents

1 Introduction 25

1.1 Motivation . 29

1.2 Objectives in each chapter . 30

1.3 Related projects . 31

2 Fundamentals of important mathematical concepts 33

2.1 Basic algebraic structures . 34

2.2 Euclidean space . 36

2.2.1 Properties . 37

2.2.2 Important derivated notions 39

2.2.2.1 Euclidean norm . 39

2.2.2.2 Distance . 40

2.2.2.3 Angles . 40

2.2.2.4 Orthogonality . 41

2.3 Manifolds . 42

2.3.1 De�nitions . 44

2.3.1.1 Charts . 44

2.3.1.2 Atlases . 45

2.3.1.3 Transition function 45

2.3.2 General example . 46

2.4 Concepts about groups . 47

2.4.1 Rigid transformations . 47

2.4.2 Congruences and Symmetry group 48

2.4.3 Lie groups . 49

11

12 Contents

2.4.3.1 Lie algebras . 49

2.4.4 The special Euclidean Group in three dimensions, SE(3), and

relevant subgroups . 51

2.4.4.1 Subgroups . 52

2.5 The exponential map . 53

2.5.1 The logarithm map . 56

3 The group SO(2): Bi-dimensional rotations 57

3.1 Planar rotations and translations . 58

3.1.1 2D translations . 58

3.1.2 2D rotations . 59

3.1.2.1 Rotation by complex numbers 62

3.2 Method for de�ning planar movements 65

4 The group SO(3): Three-dimensional rotations 69

4.1 Spatial rotations and traslations . 70

4.1.1 3D translations . 70

4.1.2 Rotation by Euler angles . 71

4.1.3 The problem of gimbal lock 75

4.1.4 Rotation by Euler axis/angle 76

4.1.4.1 Euclidean vectors rotation by Rodrigues formula . . 77

4.1.5 Rotation by quaternions . 79

4.2 Method for de�ning spatial movements 86

5 Forward Kinematics 91

5.1 Structure and components of the kinematic chain 91

5.1.1 Links . 92

5.1.2 Joints . 92

5.2 Forward kinematics resolution by homogeneous transformation matrices 94

5.3 Denavit-Hartenberg representation 95

5.3.1 Denavit-Hartenberg parameters 95

5.3.2 Denavit-Hartenberg algorithm for obtaining the forward kine-

matics model: . 97

Contents 13

5.3.2.1 Some examples for better understanding: Three-link

planar manipulator (see [46]) 100

5.3.2.2 Some examples for better understanding: Anthropo-

morphic arm . 101

6 Inverse Kinematics 103

6.1 Important points when solving Inverse Kinematics 104

6.2 Analytical methods . 106

6.2.1 Solution by geometric methods 106

6.2.1.1 Example of a three-DOF-robot geometric resolution . 106

6.2.2 Solution by algebraic methods 108

6.2.2.1 Example of a Three-DOF-spherical-arm robot alge-

braic resolution . 110

6.3 Iterative methods . 114

6.3.1 Solution by the Jacobian inversion method 114

6.3.1.1 Iterative model . 115

7 Numerical methods and their applications to solve the Inverse Kine-

matics Problem 117

7.1 Taylor's Theorem . 118

7.1.1 Taylor's theorem in one variable 118

7.1.2 Taylor's Theorem for multivariable functions 120

7.2 Optimization methods to solve equations 122

7.2.1 Gradient descent . 122

7.2.1.1 Descent gradient algorithm 124

7.2.2 Newton-Raphson Method . 125

7.2.2.1 Newton-Raphson method to solve one-variable func-

tions . 125

7.2.2.2 Newton-Raphson method to solve and minimize mul-

tivariable functions 127

7.2.3 Gauss-Newton Method . 129

7.2.3.1 Deduction from the Newton-Raphson method 130

7.2.4 Levenberg-Marquardt . 132

14 Contents

7.2.4.1 Levemberg-Marquardt's aim 132

7.2.4.2 Levenberg-Marquardt's formula 132

8 Manifolds in order to avoid non-Euclidean spaces 135

8.1 Manifolds as state representations . 136

8.2 Encapsulation of manifolds . 137

8.2.1 Summary of properties . 139

8.2.1.1 Consequences . 140

8.2.2 Generic de�nition . 141

8.3 Examples . 141

8.3.1 Manifold approach to vector space Rn 141

8.3.2 Manifold approach to SO(2) 142

9 Conclusions 143

9.1 A world of rotations . 143

9.2 The Inverse Kinematics problem . 146

9.2.1 Numerical methods and other improvements 146

9.3 Further study �elds . 148

Acknowledgements 149

A Conversions 153

A.1 2D rotations . 153

A.1.1 From 2× 2 rotation matrices to complex numbers 153

A.1.2 From complex numbers to 2× 2 rotation matrices 154

A.2 3D rotations . 154

A.2.1 From rotation matrix to Euler angles 154

A.2.2 From Euler angles to rotation matrix 155

A.2.3 From rotation matrix to Euler axis/angle 155

A.2.4 From Euler axis/angle to rotation matrix 156

A.2.5 From rotation matrix to quaternions 156

A.2.6 From quaternions to rotation matrix 156

A.2.7 From Euler angles to quaternions 157

A.2.8 From quaternions to Euler angles 157

Contents 15

A.2.9 From Euler axis/angle to quaternions 157

A.2.10 From quaternions to Euler axis/angle 158

B Coordinate systems 159

B.1 Right-handed coordinate system . 160

B.2 Left-handed coordinate system . 160

B.3 Conversion from Right-Handedness to

Left-Handedness . 161

B.3.1 Conversion of points . 161

B.3.2 Conversion of rotations . 161

C MATLAB Code 163

C.1 Rotation matrices in 2D . 163

C.2 Homogeneous transformation matrices in 2D 164

C.3 Rotation matrices in 3D . 165

C.4 Homogeneous transformation matrices in 3D 168

Bibliography 171

List of Figures

1.1 Robots working in manufacturing, clear example of the use of inverse

kinematics. 28

1.2 Humanoid robot Loki in Robolab, which was used in the attempt

to calibrate the solution to the Inverse Kinematics problem by using

GTSAM. 31

2.1 Graphic representation of the possible operation with vectors and their

equivalences. 38

2.2 Cartesian coordinate system in the three-dimensional space, where the

axes form an orthonormal system and each vector can be represented

as combination of these basis vectors or axes (see equation (2.1)). . . 41

2.3 Example of one-dimensional manifolds. These curves can be evaluated

as lines in local neighbourhoods. 43

2.4 Two-dimensional manifoldM embedded in three-dimensional space, a

point p ∈M , the tangent space at p (TxM) and the algebra m, which

de�nes the vector operations. 43

2.5 Example of two-dimensional manifolds in three-dimensional space, like

spheres, paraboloids and torus. 44

2.6 On the left side, example of an atlas from a sphere, where all the

polygons are charts (local planar approximations). On the right, the

map of topological relations between charts. 44

2.7 Example of a transition function between two charts, where M is the

manifold, φα and φβ are the charts and Tα,β and Tβ,α are the transition

functions for going from one to another. 45

17

18 List of Figures

2.8 De�nition of a manifold M , where it is possible to see two di�erent

charts (φα and φβ), and the transition function Tα,β between them.

Some important concepts are also inside red boxes. 46

2.9 Manifold M composed by a set of charts (atlas). Two charts (in

pink and yellow) have been highlighted to exemplify how they must

share a common part (in green) to make the atlas coherent. 46

2.10 The set of symmetry transformations which de�nes the symmetry

group of the equilateral triangle: the identity, rotations of order 3,

and combinations of rotations and re�ections. 48

2.11 The Lie algebra m is the tangent space of M at the identity. 49

2.12 Lie algebras so(2) and so(3) in relation to the groups SO(2) and S0(3). 50

2.13 Translation and rotation by rigid body movements. 51

2.14 Graphical interpretation of the exponential map. 54

2.15 Graphical interpretation of the logarithm map. 56

3.1 Plots of an arrow before and after the speci�ed rotations (2π/3 and

π). It has been inscribed inside a circle to visualize how the modulus

is not altered. The code details of this plot on MATLAB are contained

in the Appendix C.1. 61

3.2 E�ect of the rotation in the plane by complex numbers. 64

3.3 Plots of an arrow which represents the position on the vector intending

to specify the di�erent transformations, the rotation by −π/3 and the

displacement by tx = 2 and ty = −1. Now the circle can be used as

reference to see how after the rotation v2 = (−0.866, 0.5) the vector

has left the unit circumference to sum what indicated in each axis. . . 67

4.1 Single representation of the corresponding angles around the cited

axes and its e�ect in each case. 71

4.2 Graphical representation of the successive partial rotations on the �nal

result. 72

List of Figures 19

4.3 Plots of an arrow before and after the speci�ed rotations. It has been

inscribed inside two perpendicular circumferences to visualize how the

modulus is not altered. The details of the script to code this plot on

MATLAB are contained in Appendix C.3. 74

4.4 On the left, all the gimbals are totally free to rotate on their respective

axes. On the right, the three axis are parallel and the locking out of

the axis which depends on the rest (in this case the blue axis) is

produced. The blue gimbal cannot rotate along the orange one. . . . 75

4.5 Schematic representation of a rotation by Euler axis/angle method. . 77

4.6 Decomposition of the red vector in two: one parallel to the rotation

axis r̂ (yellow) and the remainder in green. R is the rotation operation. 77

4.7 Representation of the new de�ned vector ~t. The cross represent the

vector r̂ with outside direction. 78

4.8 Cayley graph a Cayley table for quaternions. The blue line is a mul-

tiplication by i and the red one by j in the the indicated direction. . . 80

4.9 Plots of an arrow which have been moved according to the speci�ed

transformations: a translation (tx = −1, ty = 3, tz = 2) and two

consecutive rotations (−|pi/4 around the x-axis and 3π/5 around the

z-axis). The two perpendicular circumferences can be used to visualize

how the norm 1-limits are overpassed after a translation. 89

5.1 Most used kind of links. 92

5.2 Most known one DOF joints. 93

5.3 Most known joints with more than one DOF. 93

5.4 Graphical example to explain how to place axes in Denavit-Hartenberg

representation (see [44]). 98

5.5 Three-link planar manipulator schematic. 100

5.6 Anthropomorphic arm schematic. 101

6.1 Forward Kinematics vs Inverse Kinematics. 103

6.2 Reachable workspace depending on di�erent con�gurations. 104

6.3 Graph to exemplify the dependence between system and task degrees

of freedom. 105

20 List of Figures

6.4 Robot to solve: Three-DOF-arm robot. 106

6.5 Possible two choices for the same purpose. 108

6.6 Robot to solve: Three-DOF-spherical-arm robot. 110

6.7 Iterative model for the Jacobian inversion method. 116

7.1 Di�erent approaches to the function sin(x) (in dark blue) by several

Taylor polynomials (k=1 in red, k=3 in orange, k=5 in green, k=7 in

light blue and k=9 in violet). 119

7.2 First order Taylor polynomial approximation for the sinusoidal func-

tion f (left) and second order Taylor polynomial approximation for the

same function (right). One can observe that the �rst degree polyno-

mial in 2D is a plane (in 1D is a line) and the second degree polynomial

is corresponded with a curved plane inside a three-dimensional space. 121

7.3 Graph example to show the di�erent aspects to consider when using

descent gradient depending on the function shape and the chosen

initial point. 123

7.4 Zig-zag movement when reaching the steepest direction by using de-

cent gradient. 123

7.5 Newton-Raphson method for a one-variable funtion, where r is the

root and xi the successive approximations by using tangents. 126

7.6 Comparison between the methods of Gradient descent and Newton-

Raphson. Convergence is much faster in this last one (and because of

that the e�ciency is higher), but it is not assured if the initial guess

is not close to the root. 129

7.7 Example of the optimization process for one-variable functions by us-

ing the Gauss-Newton method. 131

7.8 The Levenber-Marquardt method applied to a bi-dimensional error

function. 134

8.1 Local neighbourhood in the manifoldM (here the unit sphere) mapped

into Rn (here R2, the plane). 138

List of Figures 21

8.2 Graph to exemplify that the distance between x � δ1 and x � δ2,

represented with the dashed line, is less or equal to the distance in

the parametrization around x, which is represented with the dotted

line. 140

9.1 Local neighbourhood in the manifoldM (here the unit sphere) mapped

into Rn (here R2, the plane). 147

B.1 Comparative between right-handed and left-handed coordinate sys-

tems: x-axis in red, y-axis in green and z-axis in blue. 160

List of Tables

5.1 Three-link planar manipulator D-H parameters. 100

5.2 Anthropomorphic arm D-H parameters. 101

6.1 D-H parameters to solve the given robot. 110

9.1 Comparative graph about the storage requirements. 145

9.2 Comparative graph detailing the comparison of rotation chaining op-

erations. 145

9.3 Comparative graph detailing the vector rotating operations. 145

23

Chapter 1

Introduction

The relationship between mathematics and engineering is as old as mankind, both

of them being bound together by the optics of the common sense. This union, in

the shape of which both theory and practice develop and complement each other,

has o�ered society the possibility of transforming the world and of inventing models

out of thin air to explain the reality of things, and the fertility and attractiveness of

this bond still has people �ocking to exploit it. Writing the world anew is the most

ambitious game there is � it knows no limits and no end. All the methods and the

tricks used so far cannot begin to cover the entirety of creation itself. They are but

insu�cient patches. All the struggle, the attempts and the discoveries, fundamental

in themselves, no doubt � yet still lacking. It is the grandeur of science that embodies

the promise to answer all questions, conceivable or not by the human mind, but the

certainty of the most impressive of them are an impossible dream.

The following work takes its inspiration from mathematics to describe and si-

mulate something so purely tied to the �eld of physics such as directed movement.

When interacting with our environment, we are habitually witnesses of the meaning

of inverse kinematics, yet our eyes have gotten so used to it, that we do not stop to

ask how or why anymore. There is no doubt that when engineering runs into such a

question the search for an answer becomes an essential part of following this path.

In our case, the study of inverse kinematics is fundamental for the development of

disciplines such as robotics, arti�cial vision or videogames.

25

26 Chapter 1. Introduction

Inverse kinematics is a relatively new study �eld, but its usefulness goes beyond

the immediate and unconscious relationship between robotics and science �ction

that the Hollywood in�uence has conditioned us to see. Robots are present in many

aspects of daily life and in industry and their design requires the intertwining of

knowledge in the �elds of mechanics, computer science, electronics, control, physics

and mathematics. The world of robotics we see today still has a long way to go before

it reaches the heights imagined by Isaac Asimov but the presence of these machines in

manufacturing and even in the service of people grows more and more with each day.

As can be inferred, this project does not pretend to explain the entire develop-

ment which, aside from being too complex, would also prove too wide for it to be

possible to cover it, but it seeks to present the most important tools to begin to com-

prehend this world. The most pure generic concepts will be treated in every case,

from what is necessary to look at the hexa-dimensional space where our problem is

placed to the most important de�nitions in mechanics which allow us to catch a short

glimpse of how robotic arms can be articulated. To analyse this aspect even more

deeply, the end of this report will also include some of the most innovative techniques

used in solving the inverse kinematics problem via the use of algorithms. However,

this would not prove appropriate without previously having skilfully deciphered the

fundamentals on which the pillars of our problem is built on.

As of now, an universe comprised of orientations, e�ects, consequences and un-

known variables opens itself to the possibility of being solved. With the aim of mak-

ing its interpretation easier for the future audience, this work represents the struggle

of adapting (as much as possible) the mathematical language which although at

times seems chaotic, has proved itself fundamental for the progress of technology.

27

Introducción

La relación entre la matemática y la ingeniería es tan antigua como el hombre, y

ambas están ligadas desde la óptica del más estricto sentido común. Esta unión, en

que la teoría y la práctica se desarrollan y complementan en conjunto, ha brindado

al hombre la posibilidad de transformar el mundo, le ha permitido inventar patrones

de la nada para explicar la realidad de las cosas. Y es tan fértil el matrimonio y su

atractivo tan potente, que la curiosidad de acercarse a la gallina de los huevos de

oro es irresistible. Jugar a escribir el mundo es el más ambicioso de los propósitos,

pues es un propósito sin �nal. Todos los trucos, artimañas y ardides que han po-

dido idearse hasta hoy han resultado insu�cientes parches de la creación. Todos los

esfuerzos, tentativas y descubrimientos, sin embargo, fundamentales. La grandeza

de la ciencia es la promesa de respuesta a todos los interrogantes que nadie pueda

plantearse, pero la certeza de que los más imponentes son inalcanzables en una vida.

El trabajo que sigue a continuación se nutre de las matemáticas para describir

y simular algo tan físico como el movimiento dirigido. Al interactuar con nuestro

entorno, asistimos habitualmente al signi�cado de la cinemática inversa con unos

ojos tan acostumbrados a lo común que no plantean la pregunta del cómo. Sin

embargo, cuando los propósitos de la ingeniería se topan con tal interrogante, la

búsqueda de una respuesta se hace imprescindible para continuar el camino. En el

caso que nos ocupa, el estudio del problema de cinemática inversa es fundamental

para el desarrollo de disciplinas como la robótica, la visión arti�cial o los videojuegos.

La cinemática inversa es un estudio relativamente reciente, pero su utilidad se

escapa más allá de la relación casi inmediata e inconsciente que Hollywood nos condi-

ciona entre la robótica y la ciencia �cción. Los robots están presentes en numerosos

campos de la vida cotidiana y la industria, y para su diseño es necesario entrelazar

conocimientos sobre mecánica, informática, electrónica, control, física y matemática.

El mundo de la robótica no es todavía comparable al que Isaac Asimov se afanó en

construir, pero día tras día se multiplica la presencia de estas máquinas en los pro-

cesos de fabricación o incluso al servicio más directo de las personas.

28 Chapter 1. Introduction

Como bien puede inferirse, la pretensión de este proyecto no consiste en explicar

todo un desarrollo que, además de complejo, resultaría inabordable, sino que presen-

tará las herramientas más importantes para iniciarse a la comprensión de este mundo.

Tan sólo los conceptos más puramente genéricos serán tratados en cada caso, desde

lo necesario para mirar al espacio hexadimensional donde se asienta nuestro pro-

blema hasta las de�niciones más importantes sobre mecánica que permiten entrever

someramente la manera en que los brazos robóticos pueden ser articulados. A modo

de ampliación, se incluirán también al �nal de esta memoria algunas de las técnicas

más innovadoras que se utilizan para resolver mediante algoritmos el problema cine-

mático inverso, pero esto no resultaría apropiado sin haber descifrado previamente

con soltura los más básicos cimientos que conforman la armadura del asunto.

De aquí en adelante se descubre un universo de orientaciones, efectos, consecuen-

cias e incógnitas que resolver. Con el ánimo de facilitar su interpretación al futuro

público, este trabajo representa el esfuerzo por adaptar en la medida de lo posible

un lenguaje matemático que, si bien a veces resulta caótico, se ha demostrado fun-

damental para progresar en el desarrollo de las tecnologías.

Figure 1.1: Robots working in manufacturing, clear example of the use of inverse
kinematics.

1.1. Motivation 29

1.1 Motivation

This work is mainly motivated by the attention in three particular issues:

researching, mathematics and robotics.

Research is the motor of progress and the cause of most of the advances. A very

important part of the discoveries and improvements is the result of the work of many

university research sta�, a bene�t which should be appreciated and valued with in-

vestment. Research, the R&D itself, has an e�ect on many areas of society and also

on the economy and competitiveness of countries. University means research, and

its prestige can be measured by their researchers' standing and the quality of their

works. Since research is a consequence of curiosity, people can simultaneously both

help towards society's progress and prove their limits.

Mathematics is something usually loved or completely hated. There is no middle

term in this discussion. As the rest of sciences, it must be built step by step but it

becomes more interesting as time goes on, when one can �nd out the way in which

all its sub�elds perfectly �t each other. The attraction of mathematics lies in the

application of logic to solve problems, and analysing this structure in depth has been

a truly interesting road along the entire degree.

Finally, robotics and the labour of the research group Robolab have also been

very important in making the decision to start this project. Having had a look at

the world of robotics in a more personal way and observed how people work inside it

and the huge open fronts they must face at the same time, it is impossible not to feel

interested in this study. Thanks to getting involved in this �eld, some of the secrets

about how a robot can move or �think� have started to clear up. In addition, the

chance to admire how di�cult it is to simulate the simplest human behaviour has

allowed the admiration of a work which people think is much easier than it really is.

30 Chapter 1. Introduction

1.2 Objectives in each chapter

The goals this work follows are summarized chapter by chapter below. In this way,

the project is intended to do the following:

• Chapter 2 (see 2): To describe what the Euclidean space is and its properties,
the idea of manifold, the concept of mathematical group and Lie groups and

the exponential map.

• Chapter 3 (see 3): To explain the way of getting rotations and translations

in the bi-dimensional space and the most known methods to do it (SO(2)).

• Chapter 4 (see 4): To explain the way of getting rotations and translations

in the three-dimensional space and the most known methods to do it (SO(3)).

• Chapter 5 (see 5): To present the fundamentals of forward kinematics: the

structure and components of the kinematic chain and the di�erent methods to

solve the forward kinematics problem.

• Chapter 6 (see 6): To present the fundamentals of inverse kinematics: the

basis to consider and the di�erence between analytical and iterative methods

when solving the inverse kinematics problem.

• Chapter 7 (see 7): To explain the application of some numerical methods in

order to minimize the function of error and reaching the best solution: gradient

descent, Newton-Raphson and Levenberg- Marquardt.

• Chapter 8 (see 8): To apply the encapsulation of manifolds in order to make

easier algorithms to deal with state representations in SO(2) and SO(3).

1.3. Related projects 31

1.3 Related projects

At the beginning this project was orientated to a di�erent matter: the calibration

of inverse kinematics systems using graph factors by MATLAB and, especially

focusing on the robot Loki (an humanoid robot developed by Robolab). When

working on this task, which in the ended proved to be unsuccessful, some results

were shown to explain the reasons why the method failed. These analyses are con-

tained in the papers Calibración del Robot Loki mediante factores grá�cos

(see [68]) and Introducción a los factores grá�cos de GTSAM (see [69]), both

written in Spanish withMercedes Paoletti Ávila while working with a scholarship

in collaboration with the Computer Technology department and the Mathematics

department.

In the same line of study, the project titled Cinemática inversa en robots

sociales (Inverse Kinematics in social robots, see) describes a way of looking at the

inverse kinematics problem for robots which are focussed on social tasks. To do that,

the general solution to the Inverse Kinematics problem by the method of Levenberg-

Marquardt (see 7.33) is perfectly detailed and it represents a very good complement

to the ideas which will be mentioned in this work.

Figure 1.2: Humanoid robot Loki in Robolab, which was used in the attempt to
calibrate the solution to the Inverse Kinematics problem by using GTSAM.

Chapter 2

Fundamentals of important

mathematical concepts

Since the beginning, the task of describing reality has become a natural necessity to

the human being. But how can one explain the physical world and its behaviour?

How can one describe the way in which things interact? To manage this, an ad-

mirable tool is required. Fortunately, after much development and improvement

throughout History, this tool is now real and can be used by society: it is Math-

ematics which must be congratulated for allowing us to reach a point in evolution

where the possibility of explaining anything, with more or less complexity, is now so

much in our grasp, that we can explain the way in which something works which we

previously considered to be magic.

When facing an engineering project, the mathematical basis must be �rstly stud-

ied and the required concepts introduced, especially the most concrete ones which can

escape the common general knowledge. Hence, this work, whose goal is to describe

and analyse the physical position and orientations, must mention the Mathematics

which makes it possible before proceeding to the description related to how it makes

it.

33

34 Chapter 2. Fundamentals of important mathematical concepts

The purpose of this chapter is to present several mathematical concepts to de-

�ne and parametrize dimensions or spaces. This is needed because it is otherwise

impossible to specify an orientation without knowing where it is de�ned, which also

applies to kinematics. Knowing the di�erent ways of representing space becomes

vital considering that this idea is going to work as a background in the following

chapters.

2.1 Basic algebraic structures

De�nition 1 A binary operation on a set is a calculation that combines two

operands (elements of the set) to produce another element of the set.

De�nition 2 A group is a non-empty set G in which a binary operation

(a, b)→ ab

is de�ned satisfying the following properties (see [1]):

1. Closure: If two elements a and b belong to G, then ab is also in G.

2. Associativity: a(bc) = (ab)c for all a, b, c ∈ G.

3. Identity: There is an element 1 ∈ G such that a1 = a, where a can be any

element in G.

4. Inverse: If a is in G, then there is an element a−1 in G such that aa−1 =

a−1a = 1.

A group G is abelian if the binary operation is commutative (ab = ba) for all

a, b ∈ G.

2.1. Basic algebraic structures 35

• Example. The integers:

The set of integers Z is a group because it satis�es the properties above with

the addition operation:

1. For any two integers a, b, the sum a + b = c and c always belongs to Z,
never to any set such as fractions.

2. For all the integers a, b and c, it is satis�ed the associativity property

(a+ b) + c = a+ (b+ c).

3. There is an element (0 in this case) which acts like the identity element

for any integer a: a+ 0 = 0 + a = a.

4. For every integer a, there is an integer b such that a+b = b+a = 0. Then

the inverse element b is denoted −a.

De�nition 3 Algebra is a branch of mathematics which uses mathematical state-

ments to describe relationships between things which can vary. When a mathemati-

cal statement describes a relationship, letters are used to represent the quantity that

varies, since it is not a �xed amount. These letters and symbols are referred to as

variables. The mathematical statements that describe relationships are expressed us-

ing algebraic terms, expressions, or equations (mathematical statements containing

letters or symbols to represent numbers) (see [2]).

De�nition 4 A topology T on a set S is a collection of subsets of S which verify

the following rules (see [3]):

1. The empty set ∅ ∈ T , where ∅ is the empty set. In addition, the set S ∈ T .

2. Any union of elements of T is an element of T . Let be two elements O1 ∈
T,O2 ∈ T , then O1 ∩O2 ∈ T .

3. Any intersection of �nitely many elements of T is an element of T . Let be two

elements O1 ∈ T,O2 ∈ T , then O1 ∪O2 ∈ T .

The three restrictions before are called the axioms of topology. If they are satis�ed,

then T is called a topology on S. A topological space is a set S with a topology T .

36 Chapter 2. Fundamentals of important mathematical concepts

2.2 Euclidean space

De�nition 5 A space E is an Euclidean space when it is a kind of geometric space

where Euclid's postulates are satis�ed. The extended real number line, the Euclidean

plane or the three-dimensional space are special cases of Euclidean spaces with one,

two or three dimensions. Moreover, the abstract concept of Euclidean space is also

generalized to higher dimensions.

It is possible to de�ne n-dimensional Euclidean space, denoted En, as all the real
vector space equipped with an inner product (or scalar product).

The traditional approach to geometry de�nes Euclidean space to have the follow-

ing properties:

1. A straight line may be drawn from any one point to any other point, so only

two points are needed to de�ne a line.

2. A �nite straight line may be produced to any length in a straight line.

3. A circle may be described with any centre at any distance from that centre

(radius).

4. If two angles are right angles
(π

2

)
, then they are congruent (identical).

5. At an outer point to a line, it can be only de�ned a parallel line to the �rst

one.

The enumeration above is known as Euclid's postulates.

2.2. Euclidean space 37

As the inner product (or scalar product) is de�ned, then Euclidean space acts

like a linear real vector space. Hence, the vector in the vector space corresponds to

the points of the Euclidean space which can be de�ned by using terms of a linear

combination of orthogonal basis vectors:

P = α1 · v1 + α2 · v2 + . . .+ αn · vn (2.1)

where P is the vector representation expressed as a point in the Euclidean space,

vi are the di�erent basis vector (one for each dimension) and αi are the scalar mul-

tipliers, used in order to combine the di�erent vector basis to de�ne a concrete point.

On the other hand, the scalar product of two vectors returns a single

scalar and it is algebraically de�ned in Rn as:

v1 · v2 =
n∑
i=1

v1iv2i = v11v21 + v12v22 + . . .+ v1nv2n (2.2)

It can also be seen as the product of a row matrix by a column matrix:

(
v11, v12, . . . , v1n

)

v21

v22
...

v2n

 = v11v21 + v12v22 + . . .+ v1nv2n (2.3)

2.2.1 Properties

Since the usual scalar product is de�ned, all its properties are satis�ed in Euclidean

spaces E (see [4]):

• Commutativity: v1 · v2 = v2 · v1

• Distributivity: v1 · (v2 + v3) = v1 · v2 + v1 · v3

• Outplacement of the scalar factor: α(v1 · v2) = (αv1) · v2 = v1 · (αv2)

• De�nite positive: v · v ≥ 0, ∀v ∈ E, and v · v = 0⇔ v = 0.

38 Chapter 2. Fundamentals of important mathematical concepts

In the same way, as it has been seen, the Euclidean space contains two kind of

mathematical objects: scalars and vectors. Hence, the properties of this space can

be de�ned in terms of vector addition and scalar multiplication (see [5]):

• Commutativity of addition: v1 + v2 = v2 + v1

• Associativity of addition: v1 + (v2 + v3) = (v1 + v2) + v3

• Identity element of addition: v + 0 = v

• Inverse element of addition: −v. Then v + (−v) = 0

• Distributivity of scalar multiplication with respect to vector addition:

(v1 + v2)α = αv1 + αv2

• Compatibility of scalar multiplication with �eld multiplication:

α1(α2v) = (α1α2)v

• Identity element of scalar multiplication: 1v = v

Figure 2.1: Graphic representation of the possible operation with vectors and their
equivalences.

2.2. Euclidean space 39

2.2.2 Important derivated notions

Some de�nitions are important when working in Euclidean spaces, because they will

be used later in deductions and explanations:

2.2.2.1 Euclidean norm

De�nition 6 The norm of the vector v ∈ En is de�ned by (see [6]):

‖v‖ =
√
v · v (2.4)

This expression can also be written as:

‖v‖ =

(
n∑
i=1

v2i

)1/2

(2.5)

De�nition 7 A vector v ∈ En is an unit vector or a normalized vector if

‖v‖ = 1.

• Example:

If v =

1

2

3

⇒ ‖v‖ =
√

12 + 22 + 32 =
√

14⇒ It is not an unit vector.

• Let be v1,v2 ∈ En, and λ ∈ Rn. Then it veri�es (see [7]):

1. ‖v1‖ > 0⇔ v1 6= 0

2. ‖λv1‖ = |λ|‖v1‖

3. Cauchy-Schwarz inequality: |v1 · v2| ≤ ‖v1‖‖v2‖

4. Minkowski (or triangle) inequality: ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖

5. Pythagoras's theorem: ‖v1‖2 + ‖v2‖2 = ‖v1 + v2‖2

40 Chapter 2. Fundamentals of important mathematical concepts

2.2.2.2 Distance

De�nition 8 Ametric (or distance function) on Rn between two vectors v1, v2 ∈
En is de�ned as follows:

d(v1, v2) = ‖v1 − v2‖ =

√√√√ n∑
i=1

(v1i − v2i)2 (2.6)

The distance function is called Euclidean metric, and it expresses a special case

of the Pythagoras' Theorem.

• Example:

If v1 =
(

1, 3, 5
)
and v2 =

(
3, 1, 4

)
, then:

d(v1, v2) = ‖v1 − v2‖ = 3

2.2.2.3 Angles

De�nition 9 The angle formed by two vectors v1, v2 ∈ En, (̂v1, v2) is de�ned by its

cosine:

cos(̂v1, v2) =
v1 · v2
‖v1‖‖v2‖

, (2.7)

where v̂1, v2 = θ + 2kπ, k ∈ Z, θ ∈ [o, π].

• Example:

If v1 =
(

1, 3, 5
)
and v2 =

(
3, 1, 4

)
⇒

ˆ(v1, v2) = arccos

(
(1, 3, 5) · (3, 1, 4)

‖(1, 3, 5)‖‖(3, 1, 4)‖

)
= arccos

(
26√
910

)
= 0.53118 rad

• Properties:

1. v1 6= 0 and v2 6= 0 are linearly dependent ⇔ v̂1, v2 is 0 or π.

2. cos ̂(λv1, v2) =
λ

|λ|
cos(̂v1, v2)

2.2. Euclidean space 41

2.2.2.4 Orthogonality

The concept of orthogonality is de�ned in any space equipped with the inner product

(see [8]):

De�nition 10 Two vectors v1, v2 ∈ En are orthogonal if v1 · v2 = 0. In this case,

it is written v1 ⊥ v2.

Given a set vectors {v1, v2, . . ., vn} ∈ En, it can be checked that:

• vi · vj = 0 and i 6= j ⇒ They are an orthogonal system.

• vi ·vj = 0 if i 6= j and vi ·vj = 1 if i = j ⇒ They are an orthonormal system.

• Example:

Every coordinate system is an orthonormal system because each axis is per-

pendicular with each and every other of the rest and its norm is 1.

Figure 2.2: Cartesian coordinate system in the three-dimensional space, where the
axes form an orthonormal system and each vector can be represented as combination
of these basis vectors or axes (see equation (2.1)).

42 Chapter 2. Fundamentals of important mathematical concepts

De�nition 11 Given a euclidean vector space with �nite dimension E, any
orthogonal basis of E will be called orthogonal basis or orthonormal basis

of E (depending on the case).

• Properties for orthogonal systems:

1. If a system is orthonormal, then is also orthogonal.

2. Given v1, v2 6= 0 ∈ En, then they create a right angle.

3. The null vector is perpendicular to any vector. It is the only orthogonal

vector to all the vectors in En.

4. Given a orthonormal system v1, v2, . . . , vn 6= 0 then the system

{ v1
‖v1‖

,
v2
‖v2‖

, . . . ,
vn
‖vn‖

} is orthonormal.

To sum up, although Euclidean space is usually presented as a vector space, many

others structures can also be de�ned around it. In this work, all the explained math-

ematical tools are intended to facilitate the understanding of kinematics. Therefore,

the relationship between Euclidean space and the Lie group and Lie Algebra will

be studied in the following sections.

2.3 Manifolds

De�nition 12 An N-dimensional manifold M is a topological space where every

point p ∈ M is endowed with local Euclidean structure. In other words, in an in-

�nitely small neighbourhood of a point p the space looks smooth, so it resembles

Euclidean space near each point.

A manifold has a well de�ned tangent space at every point. This fact allows us

to apply the methods of Calculus or Linear Algebra to study them. Although near

each point a manifold resembles Euclidean space, globally a manifold might not.

The dimension of a manifold is the dimension of its tangent spaces, so a manifold

in Rn cannot have a higher dimension than n.

2.3. Manifolds 43

• Example: One-dimensional manifolds

A one-dimensional manifold is a curve without self intersections or peaks.

Curves can be closed, unbounded (indicated by arrows) or they can have one

or two endpoints, also called boundary points (see [9]).

Figure 2.3: Example of one-dimensional manifolds. These curves can be evaluated
as lines in local neighbourhoods.

• Example: Two-dimensional manifolds A two-dimensional manifold is a smooth

surface without self interactions. It may has a boundary, which is always a

one-dimensional manifold. In this kind of manifolds, each point in the surface

can be locally analysed by a tangent plane in which the properties of a concrete

algebra are de�ned.

Figure 2.4: Two-dimensional manifold M embedded in three-dimensional space, a
point p ∈ M , the tangent space at p (TxM) and the algebra m, which de�nes the
vector operations.

44 Chapter 2. Fundamentals of important mathematical concepts

A very intuitive example of what is not a manifold is the closed square, because

its corners are not smooth. However, there are a lot of surfaces which can be

evaluated locally as planes along their whole structure.

Figure 2.5: Example of two-dimensional manifolds in three-dimensional space, like
spheres, paraboloids and torus.

2.3.1 De�nitions

2.3.1.1 Charts

De�nition 13 A chart is an invertible map between a subset of the manifold and

a simple space such that both the map and its inverse preserve the same structure.

In a topological manifold, the simple space is some Euclidean space Rn. In the

case of a di�erentiable manifold, a set of charts is called an atlas, which allows

to calculate in manifolds.

Figure 2.6: On the left side, example of an atlas from a sphere, where all the poly-
gons are charts (local planar approximations). On the right, the map of topological
relations between charts.

2.3. Manifolds 45

2.3.1.2 Atlases

De�nition 14 As the description of most manifolds requires more than only a chart,

a collection of them is required which covers the whole manifold. This collection is

an atlas. An atlas is not unique because all the manifolds can be covered in multiple

ways using di�erent combinations of charts.

2.3.1.3 Transition function

De�nition 15 Charts in an atlas may overlap, so set of the manifold points may

be represented in several charts. If two charts overlap, then di�erent parts of them

represent the same region.

Given two overlapping charts, φα and φβ, a transition function goes from an

open ball in Rn to the manifold and then back to another (or the same) open ball in

Rn, usually called Tα,β = φβ ◦ φα−1. These functions, Tα,β and Tβ,α are also called

transition maps.

Figure 2.7: Example of a transition function between two charts, where M is the
manifold, φα and φβ are the charts and Tα,β and Tβ,α are the transition functions for
going from one to another.

46 Chapter 2. Fundamentals of important mathematical concepts

2.3.2 General example

The idea of manifold and all the important concepts can be easily understood looking

at the following pictures:

Figure 2.8: De�nition of a manifold M , where it is possible to see two di�erent
charts (φα and φβ), and the transition function Tα,β between them. Some important
concepts are also inside red boxes.

A more general aspect of the charts inside the manifold is bellow:

Figure 2.9: Manifold M composed by a set of charts (atlas). Two charts (in pink
and yellow) have been highlighted to exemplify how they must share a common part
(in green) to make the atlas coherent.

2.4. Concepts about groups 47

2.4 Concepts about groups

2.4.1 Rigid transformations

De�nition 16 A rigid transformation, also called isometry, is a transformation

in which the distance between points is always constant, in other words, a transfor-

mation where the output space is the same as the input one (see [10]).

d(P,Q) = d (T (P), T (Q)) (2.8)

Properties:

• Those transformations are injective (invertible) so the composition of two rigid

transformations is another rigid transformation. Thus, a rigid transformation

does not distort the size or shape of the transformed body.

d (T2 ◦ T1(P), T2 ◦ T1(Q)) = d ((T2(T1(P)), T2(T1(Q))) (2.9)

d(T1(P), T2(Q)) = d(P,Q) (2.10)

• These equalities are due to the rigidity of T1 and T2, respectively. The rigid

compositions in the Cartesian space form in this way a group under the com-

position.

As it will be seen next, these transformations are de�ned by matrices, so the

group is not commutative. The group of rigid transformations is the special Eu-

clidean group, E(n). When the re�ections are not included (proper rigid trans-

formations), the group is called special Euclidean group, SE(n).

48 Chapter 2. Fundamentals of important mathematical concepts

2.4.2 Congruences and Symmetry group

De�nition 17 Two �gures are congruent if ones can be changed into another us-

ing a combination of rotations, re�ections and translations.

When a �gure is congruent with itself in more than one way, these extra con-

gruences are called symmetries. Hence, the symmetric group is the group of

isometries under which an object is invariant with composition as operation.

A symmetry group whose shape is not distorted can be represented as the sub-

group of orthogonal group O(n).

The proper symmetry group (the subgroup of orientation-preserving isome-

tries) is a subgroup of the special orthogonal group SO(n), and is also called

rotation group of the �gure. The di�erence between O(n) and SO(n) is that SO(n)

does not allow re�ections.

• Example:

Figure 2.10: The set of symmetry transformations which de�nes the symmetry group
of the equilateral triangle: the identity, rotations of order 3, and combinations of
rotations and re�ections.

2.4. Concepts about groups 49

2.4.3 Lie groups

De�nition 18 A Lie group is a smooth manifold M which has at the same time a

group structure consistent with its manifold, so the group operations are compatible

with the smooth structure of the manifold (multiplication, inversion and identity

element). In consequence, this manifold is di�erentiable (see [11]).

In other words, a Lie group is a group which locally has the topology of Rn around

each one of its elements.

• Example. The Linear General Group (see [12]):

Let GL(n,R) be the group of square matrices n×n which are invertible. This

is a non-commutative Lie group of dimension n2. As GL(n,R) is an open

set in Rn2
(which contains an open ball around each of its points and �nding

a boundary is impossible), then it is also a di�erentiable manifold, because

the product of matrices is a di�erentiable application which can be reduced to

elementary operations.

(AB)ij =
m∑
k=1

AikBkj (2.11)

2.4.3.1 Lie algebras

De�nition 19 The Lie algebra m associated to a Lie group is the tangent vector

space to the manifold M at the identity element I. It has the same dimension as

the manifold.

m = TM(I) (2.12)

Figure 2.11: The Lie algebra m is the tangent space of M at the identity.

50 Chapter 2. Fundamentals of important mathematical concepts

In a formal way, a Lie algebra is an algebra together with a Lie bracket operator

[·, ·] : m ×m → m such as for any elements a, b and c ∈ m it holds the following

properties (see [13]):

[] : m×m −→ m (2.13)

(a, b) −→ [a, b] = ab− ba (2.14)

1. Bilinearity.

2. Skew simmetry: [a, a] = 0

3. Anti-commutativity: [a, b] = −[b, a]

4. Jacobi's identity: [a, [b, c] + [b, [c, a]] + [c, [a, b]] = 0

• Example. In order to make the notation easier, as of now TSO(2) = so(2) and

TSO(3) = so(3).

so(2) is the associated Lie Algebra to the Lie group SO(2) and so(3) is the

associated Lie Algebra to the Lie group SO(3). These groups are the set

of rotation matrices in two and three dimensions, respectively. Both will be

studied in the following chapters.

Since lines and circles are one-dimensional manifolds (parametrized with curves),

the Lie algebra of SO(2) has dimension 1. In the case of SO(3), which is a

three-dimensional manifold (with three possible rotations), its Lie algebra de-

�nes a three-dimensional vector space.

Figure 2.12: Lie algebras so(2) and so(3) in relation to the groups SO(2) and S0(3).

2.4. Concepts about groups 51

2.4.4 The special Euclidean Group in three dimensions, SE(3),

and relevant subgroups

De�nition 20 The group SE(n), special Euclidean group, is the group which

includes all the rigid body transformations (isometries without re�ections) in Rn.

In order to �nd utility in the physical world, one of the subgroups of SE(n) will

be focused: SE(3). This group comprises of all the possible transformations in R3,

in other words, any possible movement of rotation or translation. The members of

this are the set of 4× 4 matrices with the following structure (see [14]):(
R(θ) t

01×3 1

)
, (2.15)

where the rotation R(θ) ∈ S0(3) and the possible translations t = [tx, ty, tz]
T ∈ R3.

This way of representing transformations will be studied in detail in sections 3.2 and

4.2. Rotations will be de�ne in the next chapter (see 4.1.1).

Figure 2.13: Translation and rotation by rigid body movements.

• Properties:

� SE(3) is a six-dimensional manifold, since it has six degrees of freedom

(this concept will be explained in more detail later on): three for 3D

translations and three for 3D rotations.

� As SE(3) is embedded in the more general GL(4,R), then it also a Lie

group.

52 Chapter 2. Fundamentals of important mathematical concepts

• In addition, since SE(3) is a group, it satis�es that:

� The set is closed under the binary operation of multiplication: if A,B ∈
SE(3)⇒ AB ∈ SE(3).

� This binary operation is associative: (AB)C = A(BC)

� For every element A ∈ SE(3), there is an identity element given by the

4× 4 identity matrix, I ∈ SE(3), such that AI = IA = A (rotation of kπ

with a null translation).

� For every element A ∈ SE(3), there is an identity inverse, A−1 ∈ SE(3),

such that AA−1 = A−1A = I. All the matrices are square, so all of them

have inverse.

2.4.4.1 Subgroups

There are many other groups which are interesting in rigid body kinematics, and

they are subgroups of SE(3). A subgroup consists of a collection of the group

elements which themselves form a group with the same binary operation. Of course,

all these groups satisfy the group properties simultaneously in each case (see [15]).

• The group of rotations in three dimensions: SO(3) (chapter 4)

De�nition: It is the set of all the proper orthogonal 3× 3 matrices:

SO(3) = R : R ∈ R3×3,RTR = RRT = I

Interpretation: All the spherical displacements. The set of rotations which

can be generated by a spherical joint.

• The special Euclidean group in two dimensions: SE(2)

De�nition: The set of all 3× 3 matrices with the structure:

cosθ −sinθ tx

sinθ cosθ ty

0 0 1


, where θ is the rotation angle and tx and ty the de�ned displacements,

Interpretation: All the planar displacements and rotations possible.

2.5. The exponential map 53

• The group of rotations in two dimensions: SE(2) (chapter 3)

De�nition: It is the set of all the proper orthogonal 2× 2 matrices:

(
cosθ −sinθ
sinθ cosθ

)

Interpretation: All the rotations in the plane. The set of all the displace-

ments which a single revolute joint can do.

• The groups of translations in 3D, 2D and 1D: T (i) with i = {1, 2, 3}

De�nition: The set of all 3 × 1, 2 × 1 vectors or real numbers with vector

addition (or simply addition in the last case) as binary operation.

Interpretation: All the possible direct displacements conserving orientations

in the the three-dimensional space (n = 3) (section 4.1.1), the Cartesian plane

(n = 2) (section 3.1.1) or parallel to an axis (n = 1). In this last circumstance,

it is the set of displacements which a single prismatic joint can do.

2.5 The exponential map

De�nition 21 The exponential map is a function which maps elements from the

Lie algebra to the correspondent Lie group (manifold) (see [16]).

exp : m→M (2.16)

For any square matrix M , the exponential map eM is well de�ned and coincides

with the matrix exponentiation, which can be written:

eM =
∞∑
k=0

1

k!
Mk = I +M +

M2

2!
+
M3

3!
+
M4

4!
+ . . . (2.17)

54 Chapter 2. Fundamentals of important mathematical concepts

• Properties [17]:

1. It is a smooth map.

2. It is surjective (it covers the Lie group entirely).

3. It is not injective (there are many points to map one).

4. Identity: eM=0 = e0 = I

5. Inverse: e−M = (eM)−1

6. In general, it is non-linear: eM1+M2 6= eM1eM2 and eM1eM2 6= eM2eM1

7. Exponential properties: eαM+βM = eαMeβM , with α, β ∈ R.

8. Derivative: ∂eM = ∂MeM = eM∂M

9. In SO(3), the exponential map coincides with the rotation's Rodrigues

formula (see 4.1.4.1).

Figure 2.14: Graphical interpretation of the exponential map.

2.5. The exponential map 55

• Example. SO(2) (see [18]):

so(2) is one-dimensional, and it is possible to take as basis:

M(θ) =

(
cosθ −sinθ
sinθ cosθ

)
(2.18)

Near the identity, the tangent vector is calculated taking into account that

θ ≈ 0. In θ = 0:

dM(θ)

dθ
=

(
−sin0 cos0

sin0 cos0

)
=

(
0 −1

1 0

)
(2.19)

A generic element of so(2) is θM , with θ ∈ R. Then a generic element of

SO(2) is m(θ) = eθM . Considering that M2 = −1:

m(θ) = 1 + θM +
θ2M2

2!
+
θ3M3

3!
+
θ4M4

4!
+ . . . (2.20)

m(θ) = (1− 1

2
θ2+ . . .+

(−1)n

(2n)!
θ2n+ . . .)1+(θ− 1

3!
+ . . .+

(−1)n+1

(2n+ 1)!
θ2n+1+ . . .)M

(2.21)

Finally:

m(θ) = cosθ1 + sinθL =

(
cosθ sinθ

−sinθ cosθ

)
(2.22)

56 Chapter 2. Fundamentals of important mathematical concepts

2.5.1 The logarithm map

De�nition 22 Since the exponential map is surjective, at least an inverse exists.

This inverse is the logarithm map, which map the elements from the manifold to

the algebra.

ln : M → m (2.23)

• Properties [19]:

1. It is a smooth map.

2. It is surjective (it covers the Lie algebra entirely).

3. It is not injective (there are many points to map one).

4. Identity: ln(I) = 0 = (M = 0)

5. Inverse: ln(M−1) = −log(M)

6. In general, it is non-linear: ln(M1M2) 6= ln(M1) + ln(M2)

7. Exponential properties: eln(M) = M

8. Derivative: ∂ln(M) = M−1∂M

Figure 2.15: Graphical interpretation of the logarithm map.

Chapter 3

The group SO(2): Bi-dimensional

rotations

De�nition 23 The special orthogonal group in two dimensions, SO(2), is

de�ned by the set of uni-modular, real and orthogonal 2× 2 matrices (see [20]).

It is possible to construct a matrix of the form:

M =

(
a c

b d

)
(3.1)

where a, b, d and d are real numbers which verify |M | = ad− cb = 1

(as mentioned in section 3.1.2, last property).

Assuming M is orthogonal then M−1 = MT . To accomplish that, a must be

equal to d and c to -b, so the new matrix is:

M2 =

(
a −b
b a

)
(3.2)

Given M2, the condition for the determinant requires that a2 + b2 = 1, so the

values for a and b are a = cosθ (or sinθ) and b = sinθ (or cosθ, respectively).

57

58 Chapter 3. The group SO(2): Bi-dimensional rotations

When θ ∈ [−π,+π], then it all the uni-modular, real and orthogonal 2x2 matrices

can be obtained. This can be demonstrate by proving that M−1 = MT , in other

words, M ·MT = I (see [21]):

M ·MT =

(
cosθ −sinθ
sinθ cosθ

)
·

(
cosθ −sinθ
sinθ cosθ

)
= (3.3)(

cos2θ + sen2θ cosθsinθ − cosθsinθ
sinθcosθ − cosθsinθ sin2θ + cos2θ

)
=

(
1 0

0 1

)
(3.4)

So all the possible rotations in the plane are indeed in SO(2).

3.1 Planar rotations and translations

3.1.1 2D translations

De�nition 24 Given a position in the plane v = (x, y) ∈ R2 in such way that

v = (x, y)T , a translation is only a displacement denoted by t = (tx, ty)
T which

preserve the distance between points only adding the values tx and ty to the original

coordinates (see [22]).

Mathematically,

v1 = v + t =

(
x

y

)
+

(
tx

ty

)
=

(
x+ tx

y + ty

)
, (3.5)

where v1 is new vector composed by the original one plus the displacement.

• The main property of translations is the e�ect of two or more successive trans-

lations which is given by the sum of the translations implicated.

v2 = v1 + t2 = v + t1 + t2 | v3 = v2 + t3 = v + t1 + t2 + t3 (3.6)

NOTE: An example of translations will be given in combination with rotations

at the end of the chapter (see 3.2).

3.1. Planar rotations and translations 59

3.1.2 2D rotations

A rotation around the origin in a Cartesian space is represented by a 2 × 2 matrix

with the following form:

Rθ =

(
cosθ −sinθ
sinθ cosθ

)
(3.7)

If there is a vector v = (x, y)T with a magnitude r and an angle from the x-axis

φ, the multiplication of this matrix R(θ) by the vector will give another vector with

the same magnitude but displaced θ+φ from the x-axis in an anticlockwise rotation.

It is easy to see using the polar form of the vector v:

v1 = Rθv =

(
cosθ −sinθ
sinθ cosθ

)(
rcosφ

rsinφ

)
=

(
rcosθcosφ− rsinθsinφ
rsinθcosφ+ rcosθsinφ

)
=

(
rcos(θ + φ)

rsin(θ + φ)

)
, (3.8)

where v1 is the new vector resulted by the rotation.

Thus, a couple of properties are deduced (see [23]):

• A rotation of 0 radians has no e�ect because the resulting matrix is the identity

matrix and any multiplication will keep constant the original one:

R(0) =

(
cos0 −sin0

sin0 cos0

)
= R(0) =

(
cos1 −sin0

sin0 cos1

)
(3.9)

60 Chapter 3. The group SO(2): Bi-dimensional rotations

• The e�ect of successive rotations can be written as matrix multiplication:

v2 = R(θ1)v1 = R(θ2)R(θ1)v | v3 = R(θ3)v2 = R(θ3)R(θ2)R(θ1)v (3.10)

That is true because R(θ2)R(θ1) = R(θ2 + θ1) and it can be checked using

standard trigonometric identities.

• The inverse of a rotation matrix can be understood by a rotation in the opposite

direction by the properties of sine and cosine functions, so

R(θ)−1 = R(−θ) (3.11)

Therefore, the main conclusion derived is

R(θ)−1R(θ) = R(−θ)R(θ) = R(−θ + θ) = R(0) = I

Hence, this matrix multiplication has no e�ect.

• The determinant of a rotation matrix is always equal to one.

det(R(θ)) =

∣∣∣∣∣cosθ −sinθsinθ cosθ

∣∣∣∣∣ = cos2θ + sin2θ = 1 (3.12)

This last property sustains that a rotation does not deform the shape of the ro-

tated body by increasing or reducing its size, only spins it around. In addition,

the determinant is positive because there is not re�ection in the transformation

neither. These two features coincide with the postulates in section 2.4.1.

3.1. Planar rotations and translations 61

• Example. 2D rotation matrices

At this point, an example will be shown using the softwareMATLAB in order

to exemplify what has been described before. The aim of this example is to

rotate a vector v = (1, 0)T twice. First by an angle of 2π/3 and after that by

an angle of π counterclockwise.

>> v1=[1 0]';

>> Rot_matrix=[cos(2*pi/3) -sin(2*pi/3); sin(2*pi/3) cos(2*pi/3)];

>> v2=Rot_matrix*v1

v2 =

-0.5000

0.8660

>> Rot_matrix=[cos(pi) -sin(pi); sin(pi) cos(pi)];

>> v3=Rot_matrix*v2

v3 =

0.5000

-0.8660

Figure 3.1: Plots of an arrow before and after the speci�ed rotations (2π/3 and π).
It has been inscribed inside a circle to visualize how the modulus is not altered. The
code details of this plot on MATLAB are contained in the Appendix C.1.

62 Chapter 3. The group SO(2): Bi-dimensional rotations

3.1.2.1 Rotation by complex numbers

A rotation in the Cartesian space can be also implemented by complex numbers. It

must be remembered that the position in the plane can be speci�ed with a complex

number, where the axis x and y reference the real axis and the imaginary one. A

complex number has two main ways of being expressed (see [24]):

• Cartesian form:

C = a+ ib, (3.13)

where a and b ε R and i, C ∈ C.

The module of a complex number is the square root of its squared elements. By

dividing a complex number by its module, one obtains the normalized complex.

• Polar form (or Euler form): It indicates the modulus and argument (angle) of

the position vector in the plane:

C = reiθ, (3.14)

where r is the modulus (calculated as indicated before) and θ is the argument

(which can be calculated as tan−1 =
b

a
).

If the complex is normalized, the modulus is equal to 1 and the factor r disap-

pears.

The rotation of a vector in the plane is the result of a multiplication between two

or more exponentials. If the vector has unitary norm:

eiφ · eiθ = ei(φ+θ) = ei(θ+φ) (3.15)

3.1. Planar rotations and translations 63

• Example. 2D rotation by complex numbers using MATLAB

In a similar way to the previous example, the same vector will be rotated �rst

by and angle of
2π

3
and later π. To do that with complex numbers, the �rst

step consists in expressing the vector in Euler form:

The vector v = (1, 0)T can be written in the complex plane as v = 0 + i:

>> v1=1+0*i;

>> abs(v1)

ans =

1

>> angle(v1)

ans =

0

Then, v = (1, 0)T = 1ei0. Rotating this vector:

>> v1=1*exp(i*0);

>> v2=v1*exp(i*2*pi/3)

v2 =

-0.5000 + 0.8660i

>> v3=v2*exp(i*pi)

v3 =

0.5000 - 0.8660i

64 Chapter 3. The group SO(2): Bi-dimensional rotations

These complex numbers in Cartesian form are equivalent to the vectors

v2 = (−0.5, 0.8660)T and v3 = (0.5, 0.8660)T , which are coincident with the

results in the previous example and with the �gure 3.2. Anyway, the �nal

rotation can be also calculated with a single operation:

>> v1=1*exp(i*0);

>> v3=v1*exp(i*2*pi/3)*exp(i*pi)

v3 =

0.5000 - 0.8660i

To sum up, the way in which vectors change its argument inside the unitary

circumference as the following �gure illustrates:

Figure 3.2: E�ect of the rotation in the plane by complex numbers.

3.2. Method for de�ning planar movements 65

3.2 Method for de�ning planar movements

The way of specifying transformations on the plane is by 3× 3 matrices which store

this information. The two �rst columns are relative to a rotation angle and the last

one to a translation on the plane. Since matrices must be square, the third row is

independent and formed by zeros in relation with the rotation columns and a one

in the last position (the relative to translation) to keep the property of not to be

distorted. Hence, the matrix which denotes a transformation on the plane has the

following aspect (see [25]):

T =

cosθ −sinθ tx

sinθ cosθ ty

0 0 1

 =

(
R(θ) t

0 1

)
(3.16)

It is important to clarify that these two kinds of transformation cannot take place

simultaneously, because the result is di�erent. Anyway, there is no robotic joint able

to implement these two movements at the same time.

Developing di�erent transformations in cascade, it is possible to see how:(
R(θ1) t1

0 1

)(
R(θ2) t2

0 1

)
=

(
R(θ2 + θ1) R(θ2)t1 + t2

0 1

)
(3.17)

This fact can be shown making the corresponding operations:cosθ2 −sinθ2 t2x

sinθ2 cosθ2 t2y

0 0 1

 =

cosθ1 −sinθ1 t1x

sinθ1 cosθ1 t1y

0 0 1

 = (3.18)

cos(θ2 + θ1) −sin(θ2 + θ1) t1xcosθ2 − t1ysinθ2 + t2x

sin(θ2 + θ1) cos(θ2 + θ1) t1xsinθ2 + t1ycosθ2 + t2y

0 0 1

 (3.19)

66 Chapter 3. The group SO(2): Bi-dimensional rotations

• Example. 2D transformations by using homogeneous transformation

matrices in MATLAB

The following example consists in the implementation of a rotation followed by

a translation on the plane. The initial vector is v = (1, 0)T and will be rotated

by an angle of −π/3. After that, and using a matrix with same structure, the

resulting vector will be displaced in 2 units in the x-axis and -1 in the y-axis.

In order to be able to apply the product of matrices, the initial vector will be

also completed with a 1 in an additional row.

>> v=[1,0,1]'

v =

1

0

1

>> T_mat=[cos(-pi/3) -sin(-pi/3) 0; sin(-pi/3) cos(-pi/3) 0; 0 0 1];

>> v2=T_mat*v

v2 =

0.5000

-0.8660

1.0000

>> T_mat=[1 0 2; 0 1 -1; 0 0 1];

>> v3=T_mat*v2

v3 =

2.5000

-1.8660

1.0000

3.2. Method for de�ning planar movements 67

The previous transformations can also be observed graphically in the �gure

below (3.3). As always, the details of the script to code this plot on MATLAB

are contained in the Appendix C.2.:

Figure 3.3: Plots of an arrow which represents the position on the vector intending
to specify the di�erent transformations, the rotation by −π/3 and the displacement
by tx = 2 and ty = −1. Now the circle can be used as reference to see how after the
rotation v2 = (−0.866, 0.5) the vector has left the unit circumference to sum what
indicated in each axis.

Chapter 4

The group SO(3): Three-dimensional

rotations

De�nition 25 In an analogue way to SO(2), the special orthogonal group in

three dimensions, SO(3), is de�ned by the set of uni-modular, real and orthogonal

3 × 3 matrices. In contrast with this last one, the rotation group SO(3) is non-

Abelian because the multiplication of rotations in three-dimensional space becomes

non-commutative.

The matrices which represent a rotation in each spatial axis are these ones:

R(Ψ, x) =

1 0 0

0 cosΨ −sinΨ

0 sinΨ cosΨ

 (4.1)

R(Θ, y) =

 cosΘ 0 sinΘ

0 1 0

−sinΘ 0 cosΘ

 (4.2)

R(Φ, z) =

cosΦ −sinΦ 0

sinΦ cosΦ 0

0 0 1

 (4.3)

where the three matrices represent, in this order, a rotation of Ψ along the x-axis, a

rotation of Θ along the y-axis and a rotation of Φ along the z-axis.

69

70 Chapter 4. The group SO(3): Three-dimensional rotations

Trivially it can be tested that these matrices are uni-modular (its determinant

is equal to 1). In addition, all these matrices are orthogonal.

R(Ψ, x)R(Ψ, x)T = I R(Θ, y)R(Θ, y)T = I R(Φ, z)R(Φ, z)T = I (4.4)

Hence, all the possible spatial rotations are also (like in the case of the possible

rotations in SO(2)) indeed in SO(3). The lengths of position vectors are preserved

and do not contain re�ections.

4.1 Spatial rotations and traslations

4.1.1 3D translations

De�nition 26 A translation in space is completely analogue to a translation in

plane. Consequently, if there is a position in space v given by three elements (x, y, z)

and expressed as v = (x, y, z)T , a translation can be de�ned as a displacement denoted

by t = (tx, ty, tz)
T which preserve the distance between points only adding the values

tx, ty and tz to the original coordinates (see [26]).

v1 = v + t =

xy
z

+

txty
tz

 =

x+ tx

y + ty

z + tz

 (4.5)

• In 3D, the property of translations which sustains that the e�ect of two or

more successive translations is de�ned by the sum of the translations involved

is still working (see section 3.1.1).

v2 = v1 + t2 = v + t1 + t2 | v3 = v2 + t3 = v + t1 + t2 + t3 (4.6)

where v1, v2 and v1 are di�erent vectors obtained from the displacement along a

distance t as indicated in each axis.

NOTE: An example of translations will be given in combination with rotations at

the end of the chapter (see 4.2).

4.1. Spatial rotations and traslations 71

4.1.2 Rotation by Euler angles

De�nition 27 Euler angles are probably the best common way of representing

rotations in three-dimensional space. This method is based on the fact that any ro-

tation may be described using three angles, as the Euler's rotation theorem sustains

(see [27]).

There are several con�gurations depending on the axes about which the rotations

are carried out, but the most used one is the x-convention(also called 3-1-3 or

z-x-z). This convention consists in a starting rotation by an angle Φ around the

z-axis followed by Θ around the x-axis (with Θ ∈ [0, π]) and �nally a third one by Ψ

around the z-axis again (see [28]).

Figure 4.1: Single representation of the corresponding angles around the cited axes
and its e�ect in each case.

These rotations are represented by the following matrices:

R(Ψ, z) =

cosΨ −sinΨ 0

sinΨ cosΨ 0

0 0 1

 (4.7)

R(Θ, x) =

1 0 0

0 cosΘ −sinΘ

0 −sinΘ cosΘ

 (4.8)

R(Φ, z) =

cosΦ −sinΦ 0

sinΦ cosΦ 0

0 0 1

 (4.9)

72 Chapter 4. The group SO(3): Three-dimensional rotations

The e�ect of the three-dimensional rotation around the body will be given by the

successive multiplication of the three partial rotations, with the following result:

R(Φ,Θ,Ψ) = R(Ψ, z) ·R(Θ, x) ·R(Φ, z) (4.10)

R(Φ,Θ,Ψ) =

 cosΨcosΦ− cosΘsinΦsinΨ cosΨsinΦ + cosΘcosΦcosΨ sinΨsinΘ

−sinΨcosΦ− cosΘsinΦcosΨ −sinΨsinΦ + cosΘcosΦcosΨ cosΨsinΘ

sinΘsinΦ −sinΘcosΦ cosΘ


(4.11)

Figure 4.2: Graphical representation of the successive partial rotations on the �nal
result.

4.1. Spatial rotations and traslations 73

• Example. 3D rotation by Euler angles

Using MATLAB, an initial vector will be rotated along three times following

the x-convention. This initial vector will be de�ned as v = (1, 0, 0) and the

rotations angles as Ψ = π, Θ = 2π/3 and Φ = −π/2:

>> v=[1,0,0]'

v =

1

0

0

>> Rot_psi=[cos(pi) -sin(pi) 0; sin(pi) cos(pi) 0; 0 0 1];

>> v2=Rot_psi*v

v2 =

-1.0000

0.0000

0

>> Rot_theta=[cos(2*pi/3) 0 sin(2*pi/3);0 1 0;-sin(2*pi/3) 0 cos(2*pi/3)];

>> v3=Rot_theta*v2

v3 =

0.5000

0.0000

0.8660

>> Rot_phi=[cos(-pi/2) -sin(-pi/2) 0; sin(-pi/2) cos(-pi/2) 0; 0 0 1];

>> v4=Rot_phi*v3

v4 =

0.0000

-0.5000

0.8660

74 Chapter 4. The group SO(3): Three-dimensional rotations

The successive e�ects in the previous vector are exempli�ed in �gure 4.3, so it

is possible to see how any orientation in three-dimensional space can be reached

by using the rotations de�ned before.

Figure 4.3: Plots of an arrow before and after the speci�ed rotations. It has been
inscribed inside two perpendicular circumferences to visualize how the modulus is
not altered. The details of the script to code this plot on MATLAB are contained
in Appendix C.3.

4.1. Spatial rotations and traslations 75

4.1.3 The problem of gimbal lock

De�nition 28 Gimbal lock, or rotation singularity, is a phenomenon consisting

of the alignment of two of the three axes of rotation (gimbals) causing the loss of

one degree of freedom (or more) and impeding the system to rotate along the a�ected

directions (see [29]). Any system that uses Euler angles will face this problem because

the three axes are independently evaluated.

Figure 4.4: On the left, all the gimbals are totally free to rotate on their respective
axes. On the right, the three axis are parallel and the locking out of the axis which
depends on the rest (in this case the blue axis) is produced. The blue gimbal cannot
rotate along the orange one.

Looking at the previous system of Euler angles, duplication is avoid by the restric-

tion of 0 ≤ Θ ≤ 2π. In contrast, it is impossible to avoid duplication when Θ = 0,

which returns a matrix whenever Φ + Ψ has a constant value. Mathematically the

second matrix (the identity matrix) has no e�ect on the product:

R(Φ, 0,Ψ) =

cosΨcosΦ− sinΨsinΦ −cosΨsinΦ− sinΨcosΦ 0

sinΨcosΦ + cosΨsinΦ −sinΨsinΦ + cosΨcosΦ 0

0 0 1

 (4.12)

Applying trigonometric formulas:

R(Φ, 0,Ψ) =

cos(Ψ + Φ) −sin(Ψ + Φ) 0

sin(Ψ + Φ) cos(Ψ + Φ) 0

0 0 1

 (4.13)

76 Chapter 4. The group SO(3): Three-dimensional rotations

Changing the values of Ψ and Φ in the above matrix has the same e�ects: the

rotation angle Ψ + Φ changes, but the rotation axis remains in the Z direction: the

last column and the last row in the matrix will not change. Only one degree of free-

dom (corresponding to Ψ + Φ) remains. The only solution for Ψ and Φ to recover

di�erent roles is to change Θ to some value other than 0. A similar problem appears

when Θ = π.

It can also be understood considering that the matrix has adopted the 2D rotation

shape, where (Ψ + Φ) is a constant (for example α) and the rotation is only on the

Cartesian plane (section (3.1.2)). Then, a spatial rotation has become impossible

(see [30]).

R(Φ, 0,Ψ) =

cosα −sinα 0

sinα cosα 0

0 0 1

 (4.14)

This is a planar rotation inside a three-dimensional space.

Gimbal lock can be avoid using a fourth gimbal, for example by using quaternions

(see 4.1.5).

4.1.4 Rotation by Euler axis/angle

De�nition 29 The axis/angle representation also derives from Euler's rotation

theorem, and holds that a rotation in three-dimensional space can be parametrized by

only a unit vector r̂ and an angle θ, which describes the magnitude of the rotation

about this axis.

Hence, the whole rotation can be expressed as:

r = θr̂, (4.15)

where r̂ is the unit vector which indicates the resulting direction which will be ro-

tated. Then, this rotational axis has three spatial components: r̂ = [rx, ry, rz]
T .

4.1. Spatial rotations and traslations 77

Figure 4.5: Schematic representation of a rotation by Euler axis/angle method.

4.1.4.1 Euclidean vectors rotation by Rodrigues formula

In a similar way to section 4.1.4, Euler-Rodrigues Formula is also based in one of the

Euler's theorems for rotations. In this case, it is based on the fact that the general

displacement of a rigid body with one point �xed is a rotation about some axis that

passes through that �xed point. In order to understand it better, we could imagine

there is an original vector and later it is decomposed in two: one parallel to the

rotation axis and the remainder orthogonal to it (see [33] [34]). Once this is done, it

will be possible to rotate the orthogonal vector in its plane using a 2D rotation.

The following �gure tries to exemplify it:

Figure 4.6: Decomposition of the red vector in two: one parallel to the rotation axis
r̂ (yellow) and the remainder in green. R is the rotation operation.

78 Chapter 4. The group SO(3): Three-dimensional rotations

Now, some equalities will be de�ned [35]:

• The vector ~h is the part of ~x in the direction of r̂, so:

~h = (~x · r̂) · r̂ (4.16)

• The vector ~s is de�ned to be the part of ~x which is perpendicular to r̂, so:

~s = (~x− ~h) = ~x− (~x · r̂) · r̂ (4.17)

• If a new vector ~t is de�ned to be perpendicular to both r̂ and ~s, as shown in

the next �gure, one can assume that:

~t = ~r · ~s = r̂ · (~x− ~h) = r̂ · ~x (4.18)

Figure 4.7: Representation of the new de�ned vector ~t. The cross represent the
vector r̂ with outside direction.

• Since r̂×~h = 0 because ~h is parallel to r̂, is possible to deduce that strictly in

the plane of rotation (�gure 4.7) the transformed location of ~s is given by:

R · ~s = cosθ~s+ sinθ~t = cosθ[~x− (~x− (~x · r̂)r̂] + sin(θ)[r̂ × ~x] (4.19)

4.1. Spatial rotations and traslations 79

• One can deduced from the �gure 4.6 that the rotated vector R ·~x can be broken

into two parts as the vector sum of h and R · ~s:

R · ~x = h+R · ~s = (~x · r̂)r̂ + (cosθ[~x− r̂(r̂ · ~x)] + sinθ[r̂ × ~x] (4.20)

• This last expression can be written as follows, resulting in theEuler-Rodrigues

formula:

R(r̂, θ, ~x) = ~xcosθ + (r̂ × ~x)sinθ + r̂(r̂ · ~x)(1− cosθ) (4.21)

4.1.5 Rotation by quaternions

De�nition 30 Quaternions, represented by Q, are part of a kind of numbers called

hypercomplex numbers. Compared to Euler angles they are easier to compose and

avoid the problem of gimbal lock. Compared to rotation matrices they are more nu-

merically stable and may be more e�cient. Quaternions have found their way into

applications in computer graphics, computer vision, robotics, navigation, molecular

dynamics, �ight dynamics, and orbital mechanics of satellites.

Analogously to the complex numbers, they can be de�ned by composition of a real

part and an imaginary one (but in this case the imaginary part is three-dimensional):

Q = a+ ib+ jc+ kd, (4.22)

where a, b, c, d ∈ R, i, j, k are square roots of −1 and Q ∈ R4.

80 Chapter 4. The group SO(3): Three-dimensional rotations

All the possible products and equivalences between the di�erent imaginary units

are collected below:

i2 = j2 = k2 = −1 (4.23)

ij = −ji = k (4.24)

jk = −kj = i (4.25)

ki = −ik = j (4.26)

(4.27)

A di�erent way of thinking about these products is on the Cayley graph, which

is resumed on the Cayley table, as can be seen next:

Figure 4.8: Cayley graph a Cayley table for quaternions. The blue line is a multi-
plication by i and the red one by j in the the indicated direction.

In addition to the representation before, quaternions can also be expressed in

other ways:

• Complex matrix representation:(
a+ ib c+ id

−c+ id a− ib

)
(4.28)

4.1. Spatial rotations and traslations 81

One can deduce two conclusions:

� As one can observe, for complex numbers this matrix becomes diagonal.

� The norm of the quaternion is the square root of the determinant of this

matrix (
√
a2 + b2 + c2 + d2).

• Compacted representation (see [31]):

Q = [q0, q]
T , (4.29)

where the imaginary part is grouped in q. It is possible to see an analogy

between quaternions and real numbers (Q = [q0, 0]) and with the vectors in R3

(Q = [0, q]).

This last notation will be used as of now. In any case a = q0, b = q1, c = q2 and

d = q4.

The main properties of quaternions are:

• The conjugated quaternion Q∗ is:

Q∗ = q0 − iq1 − jq2 − kq3 (4.30)

• The sum of two quaternions Q1 and Q2 is:

Q1 +Q2 = (q01 + q02) + i(q11 + q12) + j(q21 + q22) + k(q31 + q32) (4.31)

• The product of two quaternions Q1 and Q2 is:

Q1 ·Q2 = (q01q02 − q11q12 − q21q22 − q31q32) (4.32)

+i(q01q12 + q11q02 + q21q32 − q31q22) (4.33)

+j(q01q22 − q11q32 + q21q02 + q31q12) (4.34)

+k(q01q32 + q11q22 − q21q12 + q31q02) (4.35)

82 Chapter 4. The group SO(3): Three-dimensional rotations

• The norm of a quaternion Q is:

‖Q‖ =
√
Q ·Q∗ =

√
Q∗ ·Q =

√
q20 + q21 + q22 + q23 (4.36)

In relation to rotations, quaternions can be written in terms of angle and axis in

the following way:

q0 = cos

(
θ

2

)
(4.37)

q = sin

(
θ

2

)
n (4.38)

where n =

 ij
k

 and θ =

Ψ(i)

Θ(j)

Φ(k)


NOTE: In this case the angle Ψ represents a rotation along the x-axis, instead of

the z-axis as in the last convention for Euler angles. It is convenient to remember the

convention used before in the section (4.7) is completely subjective and any other

could be used in a similar way.

Hence, the unit quaternion (with a norm equal to 1) can be generalized as:

Qr = cos
(α

2

)
+ isin

(
Ψ

2

)
+ jsin

(
Θ

2

)
+ ksin

(
Φ

2

)
(4.39)

And its conjugated as:

Q∗r = cos
(α

2

)
− i · sin

(
Ψ

2

)
− j · sin

(
Θ

2

)
− k · sin

(
Φ

2

)
(4.40)

The rotation quaternion for a speci�ed axis is obtained by imposing a spin of 0

rad in those axis which are not involved and replacing β by the corresponding angle

in relation with the selected axis.

4.1. Spatial rotations and traslations 83

On the other hand, when mixing several axes it is necessary to use the norms of

multiplication already studied:

v2 = Qr · v ·Q∗r, (4.41)

where v is the initial vector, v2 the rotated one, Qr a quaternion vector with four

elements and Q∗r its conjugated.

Moreover, the same result can be obtained by the matrix conversion of the unit

quaternion and the subsequent multiplication:

v2 = RQ · v, (4.42)

where RQ is the conversion of the unit quaternion into matrix as it is written in the

following equation:

RQ =

q
2
0 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q0q3 + 2q1q2 q20 − q21 + q22 − q23 −2q0q1 + 2q2q3

−2q0q2 + 2q1q3 2q0q1 + 2q2q3 q20 − q21 − q22 + q23

 (4.43)

This process must be follow several times for using this method to rotate again,

after a previous conversion from the pertinent representation to quaternions.

• Example. 3D rotation by using quaternions

At this point, all the operations needed to operate using quaternions will be

developed in order to rotate the same vector used in the previous example for

Euler angles (see 4.1.2) (v = (1, 0, 0)) and also by the same angles of rotation

(Ψ = π, Θ = 2π/3 and Φ = −π/2). Each step will be explained in detail to

make the understanding easier:

84 Chapter 4. The group SO(3): Three-dimensional rotations

First, the initial vector must be written as quaternion. This process is done by

replacing each one of the axes by the corresponding imaginary unit (the x-axis

by i, the y-axis by j and z-axis by k). The real part is always 0.

v = (1, 0, 0) −→ Q = 0 + 1i+ 0j + 0k = i (4.44)

After that, the quaternion which represents the rotation is:

Qr = cos

(
θ

2

)
+ (n1i+ n2j + n3k) sin

(
θ

2

)
(4.45)

where n1, n2, n3 are used to the de�ne the rotation axis (which can be a com-

bination of three spatial ones) and θ is the rotation angle.

In this case, the rotation will be only around the z-axis, so:

Qr = cos
(π

2

)
+ (0i+ 0j + 1k) sin

(π
2

)
= 0 + 0i+ 0j + k = k (4.46)

Hence, the result vector, expressed as quaternion, is:

v2 = Qr · v ·Q∗r = (k)(i)(−k) = ki(−k) = −ik(−k) = −1 −→ v2 = (−1, 0, 0)

(4.47)

The following rotation will be developed by an angle of
2π

3
around the y-axis:

Qr = cos

(
2π

6

)
+ (0i+ 1j + 0k) sin

(
2π

6

)
= 0.5 + 0.866j (4.48)

v3 = Qr·v2·Q∗r = (0.5+0.866j)(−i)(0.5−0.866j) = (−0.5i+0.866k)(0.5−0.866j) =

(4.49)

v3 = 0.5i+ 0.866j −→ v3 = (−0.5, 0, 0.866) (4.50)

4.1. Spatial rotations and traslations 85

Finally, the last step is another rotation by −π/2 around the z-axis (according

to the x-convention):

Qr = cos

(
−π
4

)
+ (0i+ 0j + 1k) sin

(
−π
4

)
= 0.7071 + 0.7071k (4.51)

v4 = Qr ·v3 ·Q∗r = (0.7071+0.7071k)(0.5i+0.866k)(0.7071−0.7071k) = (4.52)

v4 = (0.3535i+ 0.621k + 0.335j − 0.621)(0.7071− 0.7071k) (4.53)

v4 = 0.5j + 0.866k −→ v3 = (0,−0.5, 0.866) (4.54)

As can be checked, these results perfectly match with the ones obtained

by using Euler angles (see 4.1.2), so these rotations can be identi�ed with

the �gure 4.3.

NOTE: All the operations shown above have been made manually, so they do

not appear in any Appendix. The rules for getting results have also been

explained at the beginning of this chapter.

86 Chapter 4. The group SO(3): Three-dimensional rotations

4.2 Method for de�ning spatial movements

The process for de�ning a general motion in a three-dimensional space is very similar

to the used in planar motion. The rotation matrices include translations in their last

column, so the fundamentals already seen are also valid here (section 3.2):(
R(θ) t

0 1

)
(4.55)

• One must remember that the main advantage of this representation is that it

makes the successive transformations in cascade easier:

(
R(θ1) t1

0 1

)(
R(θ2) t2

0 1

)
=

(
R(θ2 + θ1) R(θ2)t1 + t2

0 1

)
(4.56)

The only di�erence with 2D is the size and composition of these matrices, which

must be adapted for the kind of rotation depending on the axis where they are carried

out in each case:

T (Ψ, x) =


1 0 0 tx

0 cosΨ −sinΨ ty

0 sinΨ cosΨ tz

0 0 0 1

 (4.57)

T (Θ, y) =


cosΘ 0 sinΘ tx

0 1 0 ty

−sinΘ 0 cosΘ tz

0 0 0 1

 (4.58)

T (Φ, z) =


cosΦ −sinΦ 0 tx

sinΦ cosΦ 0 ty

0 0 0 tz

0 0 0 1

 (4.59)

4.2. Method for de�ning spatial movements 87

The way of working and the properties of this method are completely equivalent

to what was told in 3.2. The only di�erence between 2D and 3D is that the product

of matrices is not commutative. Therefore, when developing several transformations

in a consecutive way this aspect must be considered carefully.

• 3D transformations by using homogeneous transformations matrices

in MATLAB

In order to exemplify what has been told, some transformations will be devel-

oped on a prede�ned vector v = (1, 0, 0)T . First, a translation of tx = −1,

ty = 3 and tz = 2 will be implemented. At that point, the resulting vector will

be rotated by −pi/4 around the x-axis and by 3π/5 around the z-axis. As in

the case of 2D transformations, rotations and translations must be carried into

e�ect separately and the initial vector must be completed with 1 in the �nal

row.

>> v=[1 0 0 1]'

v =

1

0

0

1

>> T_mat=[1 0 0 -1; 0 1 0 3; 0 0 1 2; 0 0 0 1];

>> v2=T_mat*v

v2 =

0

3

2

1

88 Chapter 4. The group SO(3): Three-dimensional rotations

At this point, the resulting vector is v2 = (0, 3, 2)T . The rotation motions are

applied in the following way (the matrix shape depends on the axis):

>> T_mat=[1 0 0 0; 0 cos(-pi/4) -sin(-pi/4) 0;

0 sin(-pi/4) cos(-pi/4) 0; 0 0 0 1];

>> v3=T_mat*v2

v3 =

0

3.5355

-0.7071

1.0000

>> T_mat=[cos(3*pi/5) -sin(3*pi/5) 0 0; sin(3*pi/5) cos(3*pi/5) 0 0;

0 0 1 0; 0 0 0 1];

>> v4=T_mat*v3

v4 =

-3.3625

-1.0925

-0.7071

1.0000

Hence, the results are:

� Initial vector: v = (1, 0, 0)T

� After a translation (tx = −1, ty = 3, tz = 2): v2 = (0, 3, 2)T

� After a rotation by −π/4 around the x-axis: v3 = (0, 3.5355,−.7071)T

� After a rotation by 3π/5 around the z-axis: v4 = (−3.3625,−1.0925,−0.7071)

4.2. Method for de�ning spatial movements 89

The graphical representation of the motions above can be observed in the following

�gure 4.9. The script with the detail to code the plot are included in Appendix

C.4.

Figure 4.9: Plots of an arrow which have been moved according to the speci�ed
transformations: a translation (tx = −1, ty = 3, tz = 2) and two consecutive rota-
tions (−|pi/4 around the x-axis and 3π/5 around the z-axis). The two perpendicular
circumferences can be used to visualize how the norm 1-limits are overpassed after
a translation.

Chapter 5

Forward Kinematics

De�nition 31 Kinematics is the study of the possible movement and con�gura-

tions of a system. Thus, it is really concerned with its geometry. The task of un-

derstanding how a system can move in given circumstances requires knowledge about

forces and inertias. In order to explain it, the forward kinematics tries to describe

the position and orientation of the last link of a kinematic chain in terms of joint

variables q(t) = (q1(t), q2(t), ..., qn(t)).

This chapter will treat the concordance of all the previous transformation ma-

trices (using Matrix algebra) with the physical constitution of a robot. Forward

Kinematics is, at the end, only intended to match matrices and movements about

each joint of the kinematic chain.

5.1 Structure and components of the kinematic chain

From the mechanical point of view, a robot is a kinematic chain formed by links and

joints, which are designed to allow a relative movement between two consecutive

links. The free end of the chain is called end e�ector. Industrial robots base their

anatomy in a similar structure to an human arm (see [36]).

91

92 Chapter 5. Forward Kinematics

5.1.1 Links

De�nition 32 A link is an (assumed) rigid body that possesses at least two nodes

that are points for attachment to other links (see [37]). It can be (5.1):

• Binary link: One with two nodes.

• Ternary link: One with three nodes.

• Quaternary link: One with four nodes.

Figure 5.1: Most used kind of links.

5.1.2 Joints

De�nition 33 According to the de�nition of joint in [38], �A joint is a connection

between two or more links (at their nodes), which allows some movement, or potential

movement, between the connected links�. Joints (also called kinematic pairs) can

be classi�ed in several ways:

• By the type of contact between the elements: line, point or surface.

• By the number of degrees of freedom (DOF) allowed at the joint.

• By the type of the joint physical closure: either force or form closed.

• By the number of links joined (joint order).

De�nition 34 A degree of freedom, also called DOF, is the maximum number

of possible directions a joint can move.

5.1. Structure and components of the kinematic chain 93

There are several kinds of joints, but the most used ones are prismatic joints

and revolute joints (�gure 5.2). These joints only allow movement in one direction,

so they only have one degree of freedom.

Figure 5.2: Most known one DOF joints.

Structures with more than one degree of freedom are usually considered complex

joints (�gure 5.3).

Figure 5.3: Most known joints with more than one DOF.

At this point, it is vital to know that moving a speci�c joint will change the

following joint position because the displacement of a joint a�ects all the joints

after it. Therefore, an easy method to represent the conversions and e�ects on the

kinematic chain (given by 4 × 4 transformation matrices) is required to be as clear

as possible.

94 Chapter 5. Forward Kinematics

5.2 Forward kinematics resolution by homogeneous

transformation matrices

The forward kinematics problem has been previously reduced to �nd a transforma-

tion matrix (T) which connects the position and orientation of the end of the robot

considering the �xed reference system placed in its base.

The homogeneous transformation matrix which represents the relative position

and orientation between the associated systems to two consecutive joints is called
i−1Ai matrix. In this way, 0A1 describes the position and orientation of the reference

system corresponding to the �rst joint, 1A2 describes the position and orientation

of the second one in relation to the �rst, etc. Similarly, naming 0Ak the resulting

matrices from the product of matrices i−1Ai from i = 1 to i = k, the robot kinematic

chain can be represented in a partial or total way (see [39]).

For example, the position and orientation of the third joint with respect to the

base coordinated reference system is:

0A3 =0 A1
2A2

0A3 (5.1)

When all the DOF are considered, the 0An matrix is then called T matrix. Hence,

given a robot with n DOF, the position and orientation of the last joint will be

expressed by the T matrix in this way:

T =0 An =0 A1
1A2

2A3 ...
n−1An (5.2)

In order to describe the relationship between two consecutive elements, the most

used procedure in robotics is the Denavit-Hartenberg (D-H) representation,

whose vitality has been preserved despite of being proposed in 1955.

5.3. Denavit-Hartenberg representation 95

5.3 Denavit-Hartenberg representation

Denavit-Hartenberg representation (D-H) is a systematic procedure in order to des-

cribe the kinematic structure of an articulated chain (open kinematic chain) com-

posed by one DOF joints (see [40]).

Before applying the D-H method it is important to consider the following aspects

(see [41]):

• It is possible to start with any con�guration of the robot, but placing the robot

in an easy initial position is recommended.

• The orthogonal coordinated system in the base (X0, Y0, Z0) is placed in the

Z0-axis, located along the �rst joint axis of movement and pointing at out of

the arm of the robot shoulder.

• The reference system of each link is placed at the end of the link where the

following one is joined.

• The angle or displacement of each link is always measured by taking as base

the previous link reference system.

• When establishing the coordinated reference system in the robotic hand, the

Pieper's Principle must be considered: the three last reference systems must

be intercepted in a point in order to obtain a closed solution for these links in

the Inverse Kinematics problem.

5.3.1 Denavit-Hartenberg parameters

According to this representation, by choosing correctly the coordinate systems as-

signed to each link, it is possible to go from one link to the following by four basic

transformations which depend only on the geometrical features of the link.

This basic transformation consists of a sequence of rotations and translations

which allows to relate the element i reference system with the i−1 reference system.

96 Chapter 5. Forward Kinematics

The required transformations named above are the following ones (see [42]):

• Rotation around the zi−1-axis an angle θi

• Translation around the zi−1-axis a distance di; vector di = (0, 0, di).

• Translation around the xi-axis a distance ai; vector ai = (ai, 0, 0).

• Rotation around the xi-axis an angle αi.

Since the product of matrices is not commutative (see 2.4.1), these transforma-

tions must be implemented in a particular order, so:

i−1Ai = T (z, θi)T (0, 0, di)T (ai, 0, 0)T (x, αi) (5.3)

Calculating:

i−1Ai =


cosθi −sinθi 0 0

sinθi cosθi 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1




1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 cosαi −sinαi 0

0 −sinαi cosαi 0

0 0 0 1


(5.4)

Finally it can be expressed as:

i−1Ai =


cosθ1 −cosαisinθi sinαisinθi aicosθ1

sinθ1 cosαicosθi −sinαicosθi aisinθi

0 −sinαi cosαi di

0 0 0 1

 , (5.5)

where θi, ai, d1, α1 are the the D-H parameters for the joint i.

Therefore, only by identifying these parameters is it possible to obtain the A-

matrices relating all the robot links.

5.3. Denavit-Hartenberg representation 97

5.3.2 Denavit-Hartenberg algorithm for obtaining the forward

kinematics model:

The kinematic model can be easily applied by following these steps (see [43]):

• D-H 1. Links must be enumerated starting with 1 for the �rst one and ending

with n. The base of the robot will be enumerated as 0.

• D-H 2. In the same way, joints must be enumerated starting with 1 and

ending with n.

• D-H 3. The axis of each joint must be located. If the joint is rotative, the

axis will be its own rotation axis. If it is prismatic, it will be the axis along

the displacement is carried out.

• D-H 4. For i from 0 to n− 1, choose zi-axis along the axis of joint i+ 1 (�g.

5.4, �rst picture).

• D-H 5. Place the origin of the base system O0 in any point along z0-axis.

The axes x0 and y0 will be placed in order to form a dextrorotation (clockwise-

moved) system with z0.

• D-H 6. For i from 1 to n − 1, place system Oi (corresponding to the link

i) in the intersection of zi-axis with the common normal line to zi−1. If both

axes are crossing then Oi would be placed in the crossing point. If they were

parallel, Oi would be placed in joint i+ 1 (�g. 5.4, second picture).

• D-H 7. Choose xi in the common normal line to axes zi−1 and zi (�g. 5.4,

third picture).

• D-H 8. Choose yi in order to form a dextrorotation system with xi and zi,

completing the right-handed frame fourth.

98 Chapter 5. Forward Kinematics

Figure 5.4: Graphical example to explain how to place axes in Denavit-Hartenberg
representation (see [44]).

At this point (see [45]):

� θi: It is the angle between the axes xi−1 and xi measured in a perpendic-

ular plane to the zi−1-axis, using the right-handed rule. It is a variable

parameter in rotative joints.

� di: It is the distance along the zi−1-axis from the (i− 1)− th coordinate

system origin to the intersection between the axes zi−1 and xi. It is a

variable parameter in prismatic joints.

� ai: It is the distance along the xi-axis from the intersection of the zi−1-axis

with the xi to the i− th coordinate system origin, in the case of rotative

joint. For prismatic joints, it is the shortest distance between the axes

zi−1 and zi.

� αi: It is the angle between the axes zi−1 and zi, measured in a perpendic-

ular plane to the xi axis, using the right-handed rule.

5.3. Denavit-Hartenberg representation 99

• D-H 9. Place systemOn at the end of the robot in a way to make zn concordant

with the direction of zn−1 and x0 to be normal to zn−1 and zn.

• D-H 10. Obtain θi as the angle necessary in the rotation of zi−1 to do xi−1

and xi parallel.

• D-H 11. Obtain di as the distance, measured along the axis zi−1, that it is

needed to move the new Oi−1 for aligning xi and xi−1 each other.

• D-H 12. Obtain ai as the distance measured along the xi-axis (now coincident

with xi−1) that the new Oi−1 must be displaced to be totally concordant with

Oi in origin.

• D-H 13. Obtain αi as the angle that it must be revolved around xi (concordant

with xi−1) to make the new Oi−1 totally concordant with Oi.

• D-H 14. Obtain the transformation matrices i−1Ai previously de�ned in 5.3.1.

• D-H 15. Obtain the transformation matrix which relates the base system to

the end of the robot (T =0 A1
1A2 ...

n−1An).

• D-H 16. The matrix T de�nes the orientation (submatrix of rotation) and

position (submatrix of translation) from the referred extreme to the base de-

pending on the n joint coordinates.

100 Chapter 5. Forward Kinematics

5.3.2.1 Some examples for better understanding: Three-link planar ma-

nipulator (see [46])

Figure 5.5: Three-link planar manipulator schematic.

Link ai αi di θi

1 a1 0 0 θ1

2 a2 0 0 θ2

3 a3 0 0 θ3

Table 5.1: Three-link planar manipulator D-H parameters.

The corresponding A-matrices to this example are:

i−1Ai(θi) =


cosθi −sinθi 0 aicosθi

sinθi cosθi 0 aisinθi

0 0 1 0

0 0 0 1

 (5.6)

for i = 1, 2, 3.

5.3. Denavit-Hartenberg representation 101

Then:

T =0 A3 =0 A1
1A2

2A3 (5.7)


cos(θ1 + θ2 + θ3) −sin(θ1 + θ2 + θ3) 0 a1cosθ1 + a2cos(θ1 + θ2) + a3cos(θ1 + θ2 + θ3)

sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) 0 a1sinθ1 + a2sin(θ1 + θ2) + a3sin(θ1 + θ2 + θ3)

0 0 1 0

0 0 0 1


(5.8)

5.3.2.2 Some examples for better understanding: Anthropomorphic arm

Figure 5.6: Anthropomorphic arm schematic.

Link ai αi di θi

1 0 π/2 0 θ1

2 a2 0 0 θ2

3 a3 0 0 θ3

Table 5.2: Anthropomorphic arm D-H parameters.

102 Chapter 5. Forward Kinematics

In this case, the corresponding A-matrices are:

0A1(θ1) =


cosθ1 sinθ1 0 0

sinθi 0 −cosθ1 0)

0 1 0 0

0 0 0 1

 (5.9)

i−1Ai(θi) =


cosθi −sinθi 0 aicosθi

sinθi cosθi 0 aisinθi

0 0 1 0

0 0 0 1

 (5.10)

for i = 2, 3.

Then:

T =0 A3 =0 A1
1A2

2A3 = (5.11)


cosθ1cos(θ2 + θ3) −cosθ1sin(θ2 + θ3) sinθ1 cosθ1(a2cosθ2) + a3cos(θ2 + θ3))

sinθ1cos(θ2 + θ3) −sinθ1sin(θ2 + θ3) −cosθ1 sinθ1(a2cos(θ2) + a3cos(θ2 + θ3))

sin(θ2 + θ3) cos(θ2 + θ3) 0 a2sinθ2 + a3sin(θ2 + θ3)

0 0 0 1


(5.12)

Chapter 6

Inverse Kinematics

The chapter before has studied how the position of the end e�ector (at the end of

the robotic chain) can be perfectly placed by using Forward Kinematics and specify-

ing the displacements and angles to move. Now, the desired position and orientation

of the end e�ector will be given by the user, and the rotation angles of the required

joints will have to be calculated. This problem can have none, one or more solutions

depending on its complexity. Therefore, if there are so many con�guration limita-

tions and the system has no solution, then the system is overconstrained; if there

are relatively few restrictions and a lot of solutions can be found to solve the initial

problem, then the system is called underconstrained.

De�nition 35 The reachable workspace is the volume of space which can be

reached by the end e�ector (see �gure 6.2).

De�nition 36 The dexterous workspace is the volume of space which can be

reached by the end e�ector with all the di�erent orientations (see [47]).

Figure 6.1: Forward Kinematics vs Inverse Kinematics.

103

104 Chapter 6. Inverse Kinematics

Figure 6.2: Reachable workspace depending on di�erent con�gurations.

The mechanical complexity is important for determining the di�erent kinds of

solution which can be implemented in order to solve the problem, from analytical

(very easy systems) to di�erential ones (with much more di�cult con�gurations), as

it will be explained next.

6.1 Important points when solving Inverse Kinemat-

ics

De�nition 37 It is possible to de�ne the inverse kinematics solution as the

set of variables which allow to locate the end e�ector in a concrete position and

orientation. Unfortunately, there are no general algorithms for solving this dilemma

systematically.

Some problems must be taken into account (see [48]):

• A set of equations must be solved.

� These equations are non-linear (sin, cos) in rotation matrices.

� More than one solution can be found (singularities).

� In addition, the possibility of �nding no solution to the problem also

exists.

6.1. Important points when solving Inverse Kinematics 105

• When the solutions are multiple:

� The solution with a lower number of possible movements is the one which

must be chosen.

� At the same time, the nearest solution must also be considered.

� The lighter links must have priority to move.

� Obstacles must also be taken into account in order to avoid collisions.

Another important aspect is the proportion between the number of degrees of

freedom (DOF) in the system and the numbers of DOF required by the particular

task.

If (see �gure 6.3):

• System degrees of freedom = Required degrees of freedom to perform

the task ⇒ Two (2) solutions

• System degrees of freedom > Required degrees of freedom to perform

the task ⇒ In�nite (∞) solutions

Figure 6.3: Graph to exemplify the dependence between system and task degrees of
freedom.

Depending on the kinematics problem complexity, the three main kind of solu-

tions which are usually used are: using geometric resolution, using homogeneous

transformation matrices analysis or using iterative methods. In the last case, the

solution by Jacobians will be the one studied here.

106 Chapter 6. Inverse Kinematics

6.2 Analytical methods

6.2.1 Solution by geometric methods

Most of the simplest robots have relatively simple kinematic chains. This feature

makes the inverse kinematics problem resolution easier. Only considering the �rst

three degrees of freedom in a robot, the elements are placed in the same plane. More-

over, in the case of many robots the last three degrees of freedom are mainly used in

the end e�ector orientation. In these cases is possible to �nd a systematic method to

approach and solve the problem, making the demand of computer resources smaller

(see [48]).

The geometric procedure is based in �nding an enough number of geometric

relations between the end e�ector coordinates, the coordinates of its joints and the

physical dimensions of its elements to solve the problem.

6.2.1.1 Example of a three-DOF-robot geometric resolution

In order to make the way of solving this kind of problem clearer, the resolution to

the robot in the �gure (see 6.4) will be explained (see [49]):

Figure 6.4: Robot to solve: Three-DOF-arm robot.

6.2. Analytical methods 107

The features of this robot are shown below:

• Three DOF robot.

• Coordinates Px, Py, Pz.

• Planar structure robot.

The coordinates are referred to the point where the end e�ector must be posi-

tioned. Since the robot has a planar structure, it is de�ned by the the �rst joint

variable angle, which can be easily obtained in the following way:

q1 = arctan

(
Py
Px

)
(6.1)

Considering the elements 2 and 3 (in the same plane) and using the Law of

cosines:

r2 = (Px)
2 + (Py)

2 ⇒ r2 + (Px)
2 = (I2)

2 + (I3)
2 + 2(I2)(I3)cosq3 ⇒ (6.2)

cosq3 =
(Px)

2 + (Py)
2 + (Pz)

2 − (I2)
2 − (I3)

2

2(I2)(I3)
(6.3)

This expression allows to obtain q1 depending on the position vector at P. In

order to save computational e�orts, the function arctan will be calculated:

senq3 = ±
√

1− cos2q3 ⇒ q3 = arctan

(
±1− cos2q3

cosq3

)
(6.4)

cosq3 =
(Px)

2 + (Py)
2 + (Pz)

2 − (I2)
2 − (I3)

2

2(I2)(I3)
(6.5)

108 Chapter 6. Inverse Kinematics

The two solutions for q3 are due to the two di�erent con�gurations which the

robot can deal with (see �gure 6.5):

Figure 6.5: Possible two choices for the same purpose.

At this point, q2 is calculated from the di�erence between β and α:

q2 = β − α ⇒ β = arctan

(
Pz
r

)
= arctan

(
Pz

∓
√
P 2
x + P 2

y

)
(6.6)

Finally:

q2 = arctan

(
Pz

∓
√
P 2
x + P 2

y

)
− arctan

(
l3senq3

l2 + l3cosq3

)
(6.7)

These two possible values depend again on the possible possibilities to choose, as

speci�ed in (see 6.1), when the number of solutions was detailed.

6.2.2 Solution by algebraic methods

A priori, it is possible to determine the inverse kinematics model of a robot when

knowing the forward kinematics parameters. In other words, the task of obtaining

the inverse relations taking as starting-point the known expressions for position and

orientation can be developed (see [50]).

6.2. Analytical methods 109

However, this method is not always easy and is sometimes so complex that it must

be rejected. Besides, as the forward kinematics problem solved by transformation

matrices has twelve equations (in the case of a six-DOF robot), six �nal relations

are expected, but some dependencies between the twelve initial expressions will be

possible to �nd. The decision of this equations must be made carefully, because

sometimes transcendental equations appear, and these ones are not possible to solve

by using purely algebraic procedures. In order to avoid that, instead of isolating

directly T other combinations are searched. This is an heuristic method, not a

systematic one.

The goal of this procedure is to deduce the values of the articular variables

qk(t) = q1(t), q2(t)...qk(t) depending on the vectors n, s, a and p, which de�ne the

end e�ector location (position and orientation) as part of the transformation

matrix T. 
nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

 (6.8)

where:

• ~n: Normal vector at the end e�ector. If the hand is like a clamp, this vector is

orthogonal to the �ngers.

• ~s: Sliding vector at the end e�ector. It is pointing to the direction of the �ngers
movement when these are moving.

• ~a: Approaching vector at the end e�ector. It is pointing to the normal direction

to the back of the hand.

• ~p: Position vector at the end e�ector. It is pointing from the coordinate system

origin in the base to the coordinate system origin in the hand.

110 Chapter 6. Inverse Kinematics

6.2.2.1 Example of a Three-DOF-spherical-arm robot algebraic resolu-

tion

A proper example which can be solved in a relatively easy way by using this method

is detailed next. The robot which is aspired to be solved is shown in �gure 6.6:

Figure 6.6: Robot to solve: Three-DOF-spherical-arm robot.

The table with the Denavit-Hartenberg parameters is shown below:

Link ai αi di θi

1 0 π/2 l1 θ1

2 0 −π/2 0 θ2

3 0 0 d3 0

Table 6.1: D-H parameters to solve the given robot.

Thanks to these parameters previously de�ned, it will be possible to �nd equiva-

lences in the following way (see [51]):

T = 0A1
1A2

2A3 ⇒ (0A1)
−1 T = 1A2

2A3 ⇒ (1A2)
−1 (0A1)

−1 T = 2A3 (6.9)

6.2. Analytical methods 111

Where:

0A1 =


cosθ1 0 sinθ1 0

sinθ1 0 −cosθ1 0

0 1 0 l1

0 0 0 1

 1A2 =


cosθ2 0 sinθ2 0

sinθ2 0 −cosθ2 0

0 −1 0 0

0 0 0 1

 (6.10)

2A3 =


1 0 0 0

0 1 0 0

0 0 1 d3

0 0 0 1

 0A2 =


cosθ1cosθ2 −sinθ1 −cosθ1sinθ2 0

sinθ1cosθ2 co(θ1 −sinθ1sinθ2 0

sinθ2 0 cosθ2 l1

0 0 0 1

 (6.11)

T = 0A3 =


cosθ1cosθ2 −sinθ1 −cosθ1sinθ2 −d3cosθ1sinθ2
sinθ1cosθ2 cosθ1 −sinθ1sinθ2 −d3sinθ1sinθ2
sinθ2 0 cosθ2 c3cosθ2 + l1

0 0 0 1

 (6.12)

Performing as described before:

(0A1)
−1 T =1 A2

2A3 (6.13)


cosθ1 sinθ1 0 0

0 0 1 −l1)
sinθ1 −cosθ1 0 0

0 0 0 1



nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

 = (6.14)


cosθ2 0 −sinθ2 0

sinθ2 0 cosθ2 0)

0 −l1 0 0

0 0 0 1




1 0 0 0

0 1 0 0)

0 0 1 d3

0 0 0 1

 =


cosθ2 0 −sinθ2 −sinθ2d3
sinθ2 0 cosθ2 cosθ2d3

0 −1 0 0

0 0 0 1


(6.15)

112 Chapter 6. Inverse Kinematics

Choosing element (3, 4):

sinθ1 px − cosθ1 py = 0 ⇒ tanθ1 =
py
px

⇒ θ1 = arctan

(
py
px

)
(6.16)

In addition:

(1A2)
−1 (0A1)

−1 T = 2A3 (6.17)


cosθ2 sinθ2 0 0

0 0 −1 0

−sinθ2 cosθ2 0 0

0 0 0 1



cosθ1 sinθ1 0 0

0 0 −1 −l1
sinθ1 −cosθ1 0 0

0 0 0 1



nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

 =


1 0 0 0

0 1 0 0

0 0 1 d3

0 0 0 1


(6.18)

Calculating:


cosθ2cosθ1 cosθ2sinθ1 sinθ2 −l1sinθ2
−sinθ1 cosθ1 1 0

−sinθ2cosθ1 −sinθ2sinθ1 cosθ2 −l1cosθ2
0 0 0 1



nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

 =


1 0 0 0

0 1 0 0

0 0 1 d3

0 0 0 1


(6.19)

6.2. Analytical methods 113

Choosing element (1, 4):

cosθ2cosθ1px + cosθ2sinθ1py + sinθ2pz − l1sinθ2 = 0 ⇒ (6.20)

θ2 = arctan

(
−cosθ1px + sinθ1py

pz − l1

)
(6.21)

Choosing element (3, 4):

− sinθ2cosθ1px − sinθ2sinθ1py + cosθ2pz − cosθ2l1 = d3 ⇒ (6.22)

d3 = cos(θ2)(pz − 1)− sin(θ2)(cosθ1px + sinθ1py) (6.23)

The same result can reached by using geometric procedures.

114 Chapter 6. Inverse Kinematics

6.3 Iterative methods

Most of the movement chains are too complex to allow an analytic solution. In these

cases, the inverse kinematics problem can be solved by using a sequence of steps

leading to incrementally �nd a better solution for the joint angles. The aim is to

minimize the di�erence between the current and desired positions of the end e�ector.

The most known method is the inverse Jacobian matrix.

6.3.1 Solution by the Jacobian inversion method

De�nition 38 The Jacobian is the multidimensional extension to the di�erenti-

ation of a single variable. As there is a relation between the Cartesian space of

the end e�ector and the joint space of the joint angles, the Jacobian transforms

the di�erential angle changes to the di�erential movements of the end e�ector. It

shows how each coordinate changes with respect to each joint angle in the system.

As a result, the Jacobian is extremely useful, since it describes the �rst order linear

behaviour of a system.

Ẋ = J(θ)θ̇, (6.24)

where the vector Ẋ represents the expected change in the end e�ector. It is com-

posed by the linear velocities (x̂, ŷ, ẑ) and rotational velocities (θx, θy, θz). The

desired change is based on the di�erence between the current position/orientation

and what is speci�ed in the goal con�guration. θ̇ represents the vector of angular

velocities, which are the equation unknown variables. J is the matrix which relates

the two matrices before and it depends on the current position (see [47]).

6.3. Iterative methods 115

Hence, the equation (6.24) can be built in the following way, in relation to the

system degrees of freedom (DOF). Normally the number of DOF is six (from θ1 to

θ6): three for rotations and three for translations.

[x̂, ŷ, ẑ, θ1, θ2, θ3] =


∂x̂

∂θ1

∂x̂

∂θ2
· · · ∂x̂

∂θn
∂ŷ

∂θ1

∂ŷ

∂θ2
· · · ∂ŷ

∂θn
∂ẑ

∂θ1

∂ẑ

∂θ2
· · · ∂ẑ

∂θn

 = [θ1, θ2, θ3, θ4, · · · , θn] (6.25)

The Jacobian can be obtained column by column from the transformation ma-

trices Ai.

Since the variable is θ̇, the Jacobian inversion is needed. Therefore, the equation

before (6.24) is transformed to the form:

θ̇ = J−1(θ)Ẋ (6.26)

6.3.1.1 Iterative model

The Jacobian inversion method works in two phases. Partial transformations on the

joint angles are computed �rst. After that, the end e�ector position and the Jaco-

bian are computed. Then the end e�ector locations is changed.

The second part contains Jacobian matrix inversion and joint angles changes.

The next step consists of the repetition of the �rst step and of the change of the

end e�ector position. The obtained di�erential position of the end e�ector position

(dX) is inserted in phase two. These steps are repeated until the error (di�erence

between the current and the desired location) comes below a de�ned value ε or the

maximal number of iterations are reached (see [52]):

‖J(dθ)− dX‖ ≤ ε ∨ iterations ≥ maximal (6.27)

116 Chapter 6. Inverse Kinematics

The algorithm for developing the Jacobian inversion method is summarized

in the following �gure (6.7):

Figure 6.7: Iterative model for the Jacobian inversion method.

Within this kind of solutions, the Jacobian inversion method can be imple-

mented in many ways: Jacobian Pseudo-inverse, Jacobian Transpose, Sin-

gular Value Decomposition, Damped Least Squares or the Feedback In-

verse Kinematics method. The big complexity of these methods and the huge

computational e�orts that they demand make another family of methods, based in

numerical solutions, strongly appear. The possible algorithm to �nd these numerical

solutions will be detailed in the following chapter.

Chapter 7

Numerical methods and their

applications to solve the Inverse

Kinematics Problem

The task of �nding the angles which are needed to move the robot joints to the

desired position is a very complex mathematical problem (as it has been speci�ed

before) and all the possible methods are intended to reach the best value possible in

order to get the minimum di�erence between the desired position (the coordinates

where theoretically the end e�ector must go) and the obtained position (the coor-

dinates where it is in the real world). The Inverse Kinematics problem is destined

to minimize this di�erence (before called ε as much as possible).

As it has studied in previous chapters, not always the solution for the Inverse

Kinematics problem can be reached by an analytic way, specially when the robot

con�guration is extremely di�cult to solve. At this point, iterative methods are

used in order to �nd a solution for non-linear system, but many iterations are

required to delimit the error.

Consequently, the number of calculations (it is very important to remember the

huge computational necessity for the Jacobian inversion) and the reliability of the

�nal results make the method choice a vital aspect.

117

118
Chapter 7. Numerical methods and their applications to solve the Inverse

Kinematics Problem

7.1 Taylor's Theorem

De�nition 39 Taylor's Theorem gives an approximation of a de�ned and k-

times di�erentiable function (with so many variables as wanted) around a neigh-

bourhood of the point a (a − ε, a + ε) by a k-th order Taylor polynomial. The

higher is the polynomial order, the better is the approximation at the evaluated point

and the higher the number of points inside the neighbourhood which satisfy such ap-

proximation (see [53]).

7.1.1 Taylor's theorem in one variable

Given a function f ∈ Ck, and a ∈ dom(f), the Taylor k-order series expansion in

one variable at the point a is de�ned as the following power series:

Pk,af(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ fk)(a)

k!
(x− a)k (7.1)

In general, it can also be written as follows:

Paf(x) =
∞∑
k=0

fk)(a)

k!
(x− a)k, (7.2)

where Pk,a(x) is a polynomial with an approximated value to the function f(x) at

the point a, fk)(a) are the successive derivatives of the function which is being ap-

proximated at the point a and k is the polynomial order.

This polynomial satis�es with f(x) ' Pk,a(x) if a ∈ (a− ε, a+ ε), so the polynomial

value in the neighbourhood of the point a is approximately the value of the function

f(x) at that point. Moreover, it is trivial to see how the polynomial derivatives in

the point a until the order k are coincident with the function f(x) derivatives at that

point.

In other words, one can deduce that (see [54]):

lim
x→a

f(x)− Pk,a(x)
(x− a)k

= 0 (7.3)

7.1. Taylor's Theorem 119

This result indicates not only the di�erence between f(x) and Pk,a(x) is lower

when x approaches to a, it also means this di�erence is lower even comparing it with

(x − a)k. De�nitely, it is possible to say that Taylor polynomials are a very good

way to approximate a function in a point.

Figure 7.1: Di�erent approaches to the function sin(x) (in dark blue) by several
Taylor polynomials (k=1 in red, k=3 in orange, k=5 in green, k=7 in light blue and
k=9 in violet).

As it is possible to see, as higher is the order higher is the neighbourhood which

satisfy the approximation. In the chart it can be observed the di�erent deviations

when the functions are measured in
π

2
.

The di�erence between the obtained value by the polynomial use and real value

of the function at the desired point is called remainder term (Rk(x)):

Rk(x) = |f(x)− Pk,a(x)| (7.4)

The remainder mean-value form can be expressed as follows:

Rk(x) =
fk+1(c)

(k + 1)!
(x− a)k+1, (7.5)

where c ∈ (x− a, x+ a).

120
Chapter 7. Numerical methods and their applications to solve the Inverse

Kinematics Problem

7.1.2 Taylor's Theorem for multivariable functions

Analogously to the series expansion for functions with one variable, the Taylor's

Theorem for function with several variables describes the approximation to a mul-

tivariable function at a given point (de�ned in so many coordinates as wanted) by

using a multivariable polynomial. In this case the neighbourhood of the point is not

an interval in R, it is a ball with so many dimensions as variables in the space (in

Rn for n variables).

Given f ∈ Ck, and a := (a1, · · · , ak), a ∈ dim(f), the expression which allows

the calculation is presented below (see [55]):

Pk,af(x) = f(a) +
n∑
i=1

∂f(a)

∂xi
(xi − ai) +

1

2!

n∑
i,j=1

∂2f(a)

∂xi∂xj
(xi − ai)(xj − aj) + · · · (7.6)

· · ·+ 1

k!

n∑
i1,i2,i3,··· ,ik=1

∂kf(a)

∂xi1∂xi2∂xi3 , · · · , ∂xik
(xi1−ai1)(xi2−ai2)(xi3−ai3), · · · , (xik−aik),

(7.7)

where a and x are sets with so many variables as dimensions in the space, Pk,a(x) is a

multivariable polynomial with an approximated value to the multivariable function

f(x) at the point a,
∂kf(a)

∂xi
are the successive partial derivatives of the function with

respect each one of the variables which are composing the set of variables x at the

multivariable point a and k is the polynomial order.

As in the case for one variable, is de�ned the remainder term by the equality:

Rk,a(x) = f(x)− Pk,a(x) (7.8)

The equation (7.9) is also satis�ed, so the similarity between the function and its

Taylor polynomial is better the nearer is a and the higher is the order.

lim
x→a

Rk,a(x)

‖x− a‖k
= 0 (7.9)

7.1. Taylor's Theorem 121

These remainder term can be calculated now in this way:

Rk,a(x) =
1

(k + 1)!

n∑
i1,··· ,ik+1

∂k+1f(c)

∂xi1 · · · ∂xik+1
(xi − ai) · · · (xik+1

− aik+1
)
, (7.10)

where c is a multivariable point and c ∈ (x− a, x+ a).

The �gure 7.2 shows a graph with two multivariable approximations to a given

function at an speci�c point, in this case in two dimensions:

Figure 7.2: First order Taylor polynomial approximation for the sinusoidal function
f (left) and second order Taylor polynomial approximation for the same function
(right). One can observe that the �rst degree polynomial in 2D is a plane (in 1D is
a line) and the second degree polynomial is corresponded with a curved plane inside
a three-dimensional space.

122
Chapter 7. Numerical methods and their applications to solve the Inverse

Kinematics Problem

7.2 Optimization methods to solve equations

The great number of variables in the Inverse Kinematics problem and the complexity

which their resolution requires make impossible to use an analytic method. Hence,

the values must be estimated in order to satisfy as much as possible all the equations

at the same time, what is a very di�cult task.

Optimization methods are iterative procedures in which the solutions are approx-

imated incrementally having as basis the previous values, so the consequence is that

the higher the number of iterations is, the better is the obtained approximation. Of

course, there are several possibilities to do it. The most used ones will be seen in

this section.

7.2.1 Gradient descent

De�nition 40 Gradient descent, also known as steepest descent, is a optimiza-

tion method based in the iterative application of the �rst-order multivariable Taylor

approximation in order to reach a desired local minimum.

Given a di�erentiable and de�ned scalar �eld (it can be a multivariable function)

f(x) in a neighbourhood of a point a (which can be a multidimensional point), gra-

dient decreases fastest if one goes from a in the direction of the negative gradient of

F(a) (−∇F (a)).

This method is evidently necessary when solving asymmetric functions, because

for symmetric ones all the possible directions are the same. It is possible to �nd an

example about this aspect in �gure 7.3 (left), where the direction to move does not

matter because there are in�nite number of curves to get the goal. In contrast, when

functions are complex (which is unfortunately an inherent circumstance in Inverse

Kinematics) the direction to move must be chosen rationally. In the �gure 7.3 (right)

it is possible to distinguish two possibilities by using the descent gradient method

because depending on the initial position the method is only able to reach a local

minimum, but not always the global one is guaranteed.

7.2. Optimization methods to solve equations 123

Figure 7.3: Graph example to show the di�erent aspects to consider when using
descent gradient depending on the function shape and the chosen initial point.

It is not hard to see why this method is one of the most popular ones: it is

very simple, easy to use, and repetitions are fast. But the biggest advantage of this

method is it is the guaranty to �nd a local minimum even when a lot of

iterations are needed (see [56]).

Figure 7.4: Zig-zag movement when reaching the steepest direction by using decent
gradient.

124
Chapter 7. Numerical methods and their applications to solve the Inverse

Kinematics Problem

Nevertheless, the problem with this procedure is it is relatively slow in closing

to the minimum: technically, its rate of convergence is inferior to many other

methods. The reason is the method implies a right angle (
π

2
) turn at the conclusion

of each search line, so when the steepest descent is reached moving diagonally it has

to zig-zag back and forth across the proper direction (see �gure 7.4), what is very

ine�cient because the progress is slow.

7.2.1.1 Descent gradient algorithm

The algorithm which this method follows is shown below (see [57]). It is initialized

with a guess (x), a maximum iteration count (Nmax), a gradient norm tolerance (εg)

that is used to determine whether the algorithm has arrived at a critical point, and

a step of tolerance (εx) to determine whether signi�cant progress is being made.

1. for i = 1, 2, . . . , Nmax xi+1 ← xi − αi∇f(xi)

2. If ‖∇f(xi+1)‖ < εg then return "Converged on critical point"

3. If ‖xi − xi+1‖ < εx then return "Converged on a x value"

4. If f(xi+1)‖ > f(x) then return "Diverging"

5. Return "Maximum number of iterations reached"

The variable αi is known as the step size, and should be chosen to maintain

a balance between convergence speed and avoiding divergence. As it can seen, this

value depends on each one of the iterations i.

7.2. Optimization methods to solve equations 125

7.2.2 Newton-Raphson Method

De�nition 41 TheNewton-Raphson Method, also known as only Newton's Method,

is a procedure for �nding successively better approximations to the roots of a real-

valued function.

Given f(x) as a continuous function and continuously di�erentiable, it is possible

to reach its roots by approximations using tangents to the function and having as the

following approximation the point where the tangent line crosses with the x-axis.

7.2.2.1 Newton-Raphson method to solve one-variable functions

Let x0 a good guess of a root r and let r = x0 + h. Since the true root is r, and

h = r − x0, then h measures how far the guess x0 is from the true value of the root

(see [58]).

Since h is very small, it will be used the tangent line approximation to conclude

that:

f(r) = 0 = f(x0 + h) ≈ f(x0) + hf ′(x0) (7.11)

This expression can also be obtained from the Taylor expansion in x0 + h (see

equation (7.12)):

f(x0 + h) = f(x0) + f ′(x0)h+
1

2
f ′′(x0)h

2 + . . . , (7.12)

where h = (x− (x0 + h)) and it has been shown all the terms until the second-order

expansion.

Hence, only keeping the �rst-order terms and considering that (x0+h) approaches

to r, it can be deduced that f(x0 +h) = f(r) = 0 and the same expression as before

(7.11).

126
Chapter 7. Numerical methods and their applications to solve the Inverse

Kinematics Problem

Therefore, unless f ′(x0) is close to 0:

h ≈ − f(x0)

f ′(x0)
(7.13)

Thus:

r = x0 + h ≈ x0 −
f(x0)

f ′(x0)
(7.14)

So the �rst estimation is:

x1 = x0 −
f(x0
f ′(x0)

(7.15)

The following i iterations are implemented in exactly the same way as x1 has

been obtained from x0:

xi+1 = xi −
f(xi)

f ′(xi)
(7.16)

A graphical example is presented in �gure 7.5:

Figure 7.5: Newton-Raphson method for a one-variable funtion, where r is the root
and xi the successive approximations by using tangents.

7.2. Optimization methods to solve equations 127

7.2.2.2 Newton-Raphson method to solve and minimize multivariable

functions

The previous procedure can also be applied to solve systems of m equations with n

variables. In this case the expression (7.11) can be written as follows (see [59]):

gm(r) = g(xi) + Jg(xi)h, (7.17)

where gm(xi) =


g1(x1, x2 . . . xn)

g1(x1, x2 . . . xn)
...

gm(x1, x2 · · ·xn)

 is a system of n variables and m equations,

Jg(x) =



∂g1
∂x1

∂g1
∂x2
· · · ∂g1

∂xn
∂g2
∂x1

∂g2
∂x2
· · · ∂g2

∂xn
...

∂gm
∂x1

∂gm
∂x2
· · · ∂gm

∂xn


is the Jacobian matrix of partial derivatives of the

component functions of g(x), and h is again the distance from the initial guess to

the root which is been searched (h = (r − x0)).

In the same way as before, the �nal expression of theNewton-Raphson method

for several variables is:

xi+1 = xi − [Jg(xi)]
−1g(xi) (7.18)

In practice, xi+1 is not calculated by computing [Jg(xi)]
−1 and the multiplying by

g(xi), because the calculations which are needed for the Jacobian inversion make it

computationally ine�cient. Instead of that, it is more practical to solve the following

system of linear equations:

Jg(xi) sn = −g(xi), (7.19)

where the unknown si is solved by using a method such a Gaussian elimination, and

then setting xi+1 = xi + si.

128
Chapter 7. Numerical methods and their applications to solve the Inverse

Kinematics Problem

In the Inverse Kinematics problem the function f(x) (with m ≥ n) must be

minimized and the system of equations ∇f(x) = 0 solved. Then, g(x) = ∇f(x), and

Jj(x) = Hf(x). Therefore, the Newton-Raphson method adopts the form bellow:

xi+1 = xi − [Hg(xi)]
−1∇f(xi), (7.20)

where Hg(xi) is the Hessian matrix, the square matrix with the second-order partial

derivatives and ∇f(xi) is the gradient.

• If Hgf(xi) is positive de�nite, then its critical point is also guaranteed to be

the unique strict global minimizer of f(x).

When used for minimization, the Newton-Raphson method approximates f(xi)

by its quadratic approximation near xi.

Now, computationally the system to solve is:

Hf (xi)pi = ∇f(xi), (7.21)

where pi = [Hf (xi)]
−1∇f(xi) is the vector which solves the system and determines

the search direction.

The main advantage of this method is the high e�ciency it has when the

initial guess x0 is close to r. Besides, it also converges faster than gradient descent,

avoiding the zig-zag movement at the �nal steps (see �gure 7.6). In contrast, this

convergence is not completely guaranteed, and if the initial point is far from the

root then the method may not converge. Due to that, this initial guess must be

chosen carefully.

7.2. Optimization methods to solve equations 129

Figure 7.6: Comparison between the methods of Gradient descent and Newton-
Raphson. Convergence is much faster in this last one (and because of that the
e�ciency is higher), but it is not assured if the initial guess is not close to the root.

7.2.3 Gauss-Newton Method

De�nition 42 The Gauss-Newton Algorithm is a method used to solve non-

linear least squares problems. It can be seen as a modi�cation of the Newton-

Raphson method for �nding a minimum in a function without using second-order

derivatives, what Newton-Raphson method cannot do.

Given m functions gm(x) = (g1(x), g2(x), . . . , gm(x)) of n variables x =

(x1, x2, . . . , xn) with m ≥ n, the Gauss-Newton algorithm iteratively �nds the mini-

mum of the sum of squares:

S(g) =
1

2

m∑
i=1

gi(x)2 (7.22)

130
Chapter 7. Numerical methods and their applications to solve the Inverse

Kinematics Problem

7.2.3.1 Deduction from the Newton-Raphson method

The Gauss-Newton Method is developed from Newton-Raphson by approximation

and it is deduced having as starting point the equation (7.20). Taking into account

that S(g) =
∑m

i=1 gi(x)2, the gradient vector of S is given by:

∇S(g) =
m∑
i=1

gi(x)
∂gi(x)

∂xj
, (7.23)

where i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

The Hessian is calculated by di�erentiating the gradient elements with respect to xk

by the chain rule:

Hg(x) =
m∑
i=1

(
∂gi(x)

∂xj

∂gi(x)

∂xk
+ gi(x)

∂2gi(x)

∂xj∂xk

)
(7.24)

At the same time, it is known that the Jacobian is:

Jg(x) =
∂gi(x)

∂xj
(7.25)

The Newton-Gauss method is obtained by ignoring the second-order derivative

terms. Knowing the Jacobian, the Hessian is given by:

Hg(x) '
m∑
1=1

(
∂gi(x)

∂xj

∂gi(x)

∂xk

)
= Jg(x)TJg(x) (7.26)

As ∇gi(x) = Jg(x)Tgi(x), the equation (7.20) is the Gauss-Newton formula:

xi+1 = xi − [Hg(x)]−1∇gi(x) = xi − [Jg(x)TJg(x)]−1Jg(x)Tgi(x) (7.27)

In practice, because of the computational ine�ciency described in 7.2.2.2, the

inverse matrix is never calculated. Instead of that, it is used:

xi+i = xi + pi, (7.28)

where pi is the vector which determines the search direction.

7.2. Optimization methods to solve equations 131

The update of pi is computed by solving the linear system (7.29):

Jg(x)TJg(x)pi = −Jg(x)Tgi(x), (7.29)

where gi(x) is a set of m functions of n variables.

Some aspects must also be mentioned (see [60]):

• Assuming that Jg(x) has full rank (the maximum rank possible according to

its rows and its columns), the Hessian approximation Hg(x) = Jg(x)TJg(x) is

positive de�nite and the Gauss-Newton search direction is a descent direc-

tion.

• Otherwise, Jg(x)TJg(x) is non invertible and the equation (7.29) has no an

unique solution. In this case, the problem is under-determined or over-

parametrized.

As one can observe, the main advantage of this method is it does not need to

solve second-order derivatives like in Newton-Raphson case. However it also has

disadvantages: unlike Newton-Raphson, the only application of this method is to

minimize a sum of squared function values, and not even local convergence is guar-

anteed. Besides, the Gauss-Newton method may fail if the initial estimation is very

far from the minimum.

Figure 7.7: Example of the optimization process for one-variable functions by using
the Gauss-Newton method.

132
Chapter 7. Numerical methods and their applications to solve the Inverse

Kinematics Problem

7.2.4 Levenberg-Marquardt

De�nition 43 The Levenberg-Marquardt Algorithm (LMA), also known as

damped least-squares (DLS) is the most used optimization algorithm to solve non-

linear least squares problems (see (7.22)).

The Levenberg-Marquardt Method interpolates between theGauss-NewtonMethod

(see 7.2.3) and the Gradient descent Method (see 7.2.1). When the current esti-

mation is far from a local minimum, it behaves like the Gradient descent, and when

the minimum is close, it behaves like Gauss-Newton, so it converges faster. Fur-

thermore, it is more robust than the Gauss-Newton method, which means that in

many cases it can �nd a solution even when the starting guess is far from the �nal

minimum.

7.2.4.1 Levemberg-Marquardt's aim

The Levenberg-Marquardt Method tries to combine the advantages of convergence

of the previous methods. Hence, Levenberg-Marquardt steps are linear combination

of gradient descent and Gauss-Newton, so it comprises of adaptative rules (see [61]).

Gradient descent dominates the algorithm until a valley is reached (in order to

avoid zig-zag (see �gure 7.4)) and as of that moment Gauss-Newton steps are used

because of the good behaviour of this method in that situation.

7.2.4.2 Levenberg-Marquardt's formula

Considering that the initial idea was intended to modify the Newton-Gauss equation

to combine it with the gradient descent one, Levenberg proposed this algorithm:

xi+1 = xi − (Hg(xi) + λI)−1∇gm(x), (7.30)

where Hg(xi) is the Hessian matrix evaluated at xi around the set of functions

gm(x). λ is a positive value named damping parameter and it is used to control

the in�uence of gradient descent or Newton-Raphson in the behaviour of the method.

7.2. Optimization methods to solve equations 133

Using the Hessian approximation described in (7.26), the expression above (7.30)

can also be written as:

xi+1 = xi − ([Jg(xi)
TJg(xi)] + λI)−1∇gm(x) (7.31)

The value for λ is initially pre-�xed, normally λ = 10−3. If the obtained value

∆x = xi+1 − xi by solving the equations conducts to a reduction in the error,

then the increment is accepted and λ is divided (usually by 10) in the following

iteration. On the other hand, if the value of ∆x conducts to increment the error,

then λ is multiplied (usually by 10) and the equations are solved again. This process

stills until getting a value ∆x to decrement the error. The problem of this method

is when the value of λ is very large, the calculated Hessian matrix is not used at all.

Maquardt solved this problem by replacing the identity matrix I in the equation

before (see (7.31)) for a diagonal of the resulting Hessian, so the �nal Levenberg-

Marquardt method formula is (see [62]):

xi+1 = xi − (Jg(xi)
TJg(xi) + λdiag(Hg(xi)))

−1∇gm(x) ⇒ (7.32)

xi+1 = xi − (Jg(xi)
TJg(xi) + λdiag(Jg(xi)

TJg(xi)))
−1∇gm(x) (7.33)

134
Chapter 7. Numerical methods and their applications to solve the Inverse

Kinematics Problem

After this improvement, for large values of λ the Levenberg-Marquardt Algorithm

almost behaves like the gradient descent method (with a short step in order to �t

low curvatures). This is a good strategy when the current solution is far from the

minimum. On the contrary, if λ is a small value (to �t high curvatures), then the

Levenberg-Marquardt step is almost identical to the Gauss-Newton step. This is the

desired behaviour for the �nal steps of the algorithm since, near the minimum, the

convergence of the Gauss-Newton method can be almost quadratic [63].

The Levenberg-Marquardt Method always converges in a local minimum, but

the best solution is not completely guaranteed. In other words, the global minimum

may be reached or not depending on the initial considered point, like in the gradient

descent method (�gure 7.3 (right)).

Figure 7.8: The Levenber-Marquardt method applied to a bi-dimensional error func-
tion.

Chapter 8

Manifolds in order to avoid

non-Euclidean spaces

The most of the methods which have been seen in previous chapters work properly

in vector spaces (isomorphic to Rn). Nevertheless, in the case of rotations, this is not

always possible and variables to be estimated may not de�ne an euclidean vector

space.

In the group of rotations SO(3), for example, two optimal approaches can be

implemented: by using three parameters or over-parametrizing the system.

When using a representation with three variables (Euler Angles or another kind

of representation composed of the one-by-one spatial axis rotation), the problem of

gimbal lock (see 4.1.3) might appear because there exist no parametrization

of SO(3) with three parameters and no singularities. When the variable to be

estimated approaches such a singularity the inverse of the parametrization becomes

discontinuous. Therefore some algorithms's choice to avoid this problem is to change

the parametrization if the variables gets close to a singularity.

As it has already been seen, another option is to over-parametrize the system, for

example by using quaternions in SO(3) (using four values to parametrize) (see 4.1.5).

After that, the parametrization must be re-normalized if needed. Nevertheless, es-

135

136 Chapter 8. Manifolds in order to avoid non-Euclidean spaces

timation algorithms are not aware of the inner constraints between the parameters,

so this is especially problematic when the parametrization of the variable has more

parameters than the dimension of the measurement space, since there cannot exist

a unique result if ignoring the constraints.

The solution to these problems if to combine both approaches: the variable is

globally over-parametrized but local changes are represented with a representation

which behaves like a Euclidean space for small values, making possible to operate

like in R3. This is the aim of the theory of manifolds (see 2.3).

8.1 Manifolds as state representations

De�nition 44 The dynamic's state representation is a set of physical quanti-

ties, the speci�cation of which completely determine the system's temporal evolution.

The speci�c physical quantities which de�ne the system's state are not unique,

although their number (called the system order) it is (see [65]).

• Example. State for a de�ned three-dimensional movement.

S = R3 × SO(3)× R3, (8.1)

where three components are represented: position (R3), orientation (SO(3))

and velocity (R3).

In the simple case in which a state consists of a single component (for example, a

three-dimensional orientation), a state can be represented as a single manifold (see

2.3). If a state comprises of multiple di�erent components, then the result is also a

manifold since the Cartesian product of the manifolds representing each individual

component returns another manifold.

8.2. Encapsulation of manifolds 137

• Example. State S for a de�ned three-dimensional movement.

S = R3 × SO(3)× R3, (8.2)

where three components are represented: position (R3), orientation (SO(3))

and velocity (R3).

8.2 Encapsulation of manifolds

Manifolds are encapsulated when used in standard algorithms in order to avoid their

entire handling by the main algorithm. In other words, the goal is to help the esti-

mation algorithm handle the manifold as a black box (see [66]).

The algorithm can only access to the manifold in two di�erent ways:

� : M × Rm −→M, (8.3)

where δ 7→ x� δ is a homeomorphism from a neighbourhood of 0 ∈ Rm to a neigh-

bourhood of x ∈M .

The second way is to �nd the di�erence between the elements in M :

� : M ×M −→ Rm, (8.4)

where y 7→ y � x is the inverse of �.

Therefore:

x� (y � x) = y, (8.5)

where x, y ∈M .

138 Chapter 8. Manifolds in order to avoid non-Euclidean spaces

De�nition 45 A bijective function f de�ned around a topological space A and with

values in the space B is called a homeomorphism if the function and its inverse

are continuous. Obviously, if f is a homeomorphism, then f−1 is another one.

Two topological spaces A and B are homeomorphic if there is an homeomor-

phism between A and B. When two spaces are homeomorphic is possible to exchange

them reasoning and demonstrating without modifying conclusions. In that case, those

two spaces are considered the same topological object (see [64]).

Hence, every point of a manifold M has a neighbourhood which can be mapped

bidirectionally to Rn, and the algorithm only sees a locally mapped part of M in Rn

at any moment.

Figure 8.1: Local neighbourhood in the manifold M (here the unit sphere) mapped
into Rn (here R2, the plane).

As δ 7→ x� δ is supposed to be a homeomorphism, the dimension f M has to be

m. In addition, as the domain of the homeomorphism is a neighbourhood of 0, then

x� 0 = x.

8.2. Encapsulation of manifolds 139

The main advantage of this approach is that most standard algorithms working

on Rm can now work in the same way on M , after replacing + with � when adding

small updates to the state, and − with � when calculating the di�erence between

two states.

Moreover, algorithms do not have to deal with singularities or denormalized over-

parametrizations and, after adapting the algorithm, it is not necessary to make

further adaptations.

8.2.1 Summary of properties

Given a �-manifold and an open neighbourhood V ⊂ Rn of 0 (see [67]):

1. δ 7→ x� δ must be smooth on Rn

2. ∀x ∈M , y 7→ y � x must be smooth on x� V

3. x� 0 = x

4. ∀y ∈M : x� (y � x) = y

5. ∀δ ∈ V : (x� δ) � x = δ

6. ∀δ1, δ2 ∈ Rn: ‖(x� δ1) � (x� δ2)‖ ≤ ‖δ1 − δ2‖

The operators � and � allow a generic algorithm to modify and compare man-

ifold states as if they were �at vectors and they can do it without knowing about

the internal structure of the manifold, which works as a black box for the algorithm.

It is needed the operators to be smooth to make limits and derivatives of δ

correspond to limits and derivatives of x � δ, something vital for any estimation

algorithm. Finally, it is important to note that it is not required x � δ or y � y to

be smooth in x.

140 Chapter 8. Manifolds in order to avoid non-Euclidean spaces

8.2.1.1 Consequences

• The neutral element of � is 0.

• The fourth axiom ensure that from an element x, every other element y ∈ M
can be reached via �, making in this way δ 7→ x� δ surjective.

• The �fth axiom makes δ 7→ x�δ injective on V , so the range of perturbations for

the parametrization by � is unique. � and boxminus create a local vectorized

view of the state space. Intuitively x is a reference point which de�nes the

center of a neighbourhood in the manifold. Thus, also the coordinate system

of δ in the part of Rn onto which the local neighbourhood in the manifold is

mapped.

• The sixth axiom allows to de�ne a metric: the real distance d(x� δ1, x� δ2) is

less or equal to the distance ‖δ1 − δ2‖ in the parametrization.

Figure 8.2: Graph to exemplify that the distance between x� δ1 and x� δ2, repre-
sented with the dashed line, is less or equal to the distance in the parametrization
around x, which is represented with the dotted line.

8.3. Examples 141

8.2.2 Generic de�nition

The way to de�ne x� δ is to choose a chart (see 2.3.1.1) including x, within which

a vector ~x can be added, and project the result back to M (as it is shown in �gure

9.1). On the other hand, y�x does the inverse of the previous operation �nding the

value y in a chart including x and getting its coordinates. The choice of the chart

has to be determined by x.

Given φx as the chosen chart around x, it is possible to de�ne:

x� δ := φ−1x (φx(x)δ) (8.6)

y � x := φx(y)− φx(x) (8.7)

This de�nitions can also be proving in the following way, demonstrating the

equation 8.5:

x� (y � x) = x� (φx(y)− φx(x))⇒ (8.8)

x� (y � x) = φ−1x (φx(y) + φx(y)− φx(x))⇒ (8.9)

x� (y � x) = φ−1x (φx(y)) = y (8.10)

8.3 Examples

8.3.1 Manifold approach to vector space Rn

In this case, the � and � operators are planar projections of a planar space, so

vector addition and subtraction are implemented as follows:

x� δ = x+ δ (8.11)

y � x = y − x (8.12)

142 Chapter 8. Manifolds in order to avoid non-Euclidean spaces

8.3.2 Manifold approach to SO(2)

The special group of rotations in the plane, SO(2) (see 3), can be described as the

set matrix which verify:

SO(2) := {R ∈ R2×2;RTR = RRT = I2×2 ∧ det(R) = 1} (8.13)

At the same time, this group is also a subgroup of GL(n), the invertible matrices

using the standard multiplication. SO(2) has one DOF (degree of freedom) (see

5.1.2) and, as it has been studied in previous chapter, it can be parametrized by

using one variable:

SO(2) = {

(
cosθ −sinθ
sinθ cosθ

)
withθ ∈ R} (8.14)

A single parametrization can be made de�ning:

θ � δ := θ + δ (8.15)

θ � γ := φ(θ − γ) (8.16)

where θ is a single rotation angle, γ is the value in a chart whose coordinates are sub-

tracted and φ(δ) = δ− 2π[
δ + π

2π
] is the normalization of the di�erence θ� γ = θ− γ

to the interval (−π, π) in order to take into account that θ+ 2kπ represent the same

rotation for any integer k.

The procedure before must be developed manually in algorithms which do not

use a manifold approach.

Chapter 9

Conclusions

The report which has been developed combining di�erent matters and methods, al-

lows the analysis of several systems with diverse usefulness and features. That is why

the task of distinguishing the most relevant points or of making interesting compar-

isons in relation to the way these systems work is very important when intending

to get a critical conclusion. This chapter, consequently, is intended to summarize

the points which are vital for the comprehension of the Inverse Kinematics problem

and simultaneously de�ne the relationships between the procedures presented here.

Since it is not a lab work, it is not possible to include any analysis or obtained value

in a practical way. In lieu thereof, the analytical and compared information of the

studied theory is the best tool to acquire an useful knowledge about the contents

which have been discussed.

9.1 A world of rotations

The Cartesian plane is the most limited space where rotations make sense. Therefore,

it is �rst important to study this case to further understand the three-dimensional

world we live in. The group SO(2) (3) de�nes the meaning of rotations in the plane.

In contrast to higher dimensions, the main feature of bi-dimensional rotations is that

they have a commutative product due to the group being Abelian. This fact can be

checked making use of the methods for rotations in 2D, among which it is possible

to highlight rotation matrices and complex numbers.

143

144 Chapter 9. Conclusions

Rotation matrices are matrices by the form

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)
, which apply a θ

rotation around a planar object. The determinant must be 1 in order not to distort

or re�ect the object shape. On the other hand, complex numbers are based in Eu-

ler's formula to group the di�erent arguments (angles) in the exponential exponent,

getting the resultant rotation. This method requires the conversion from Cartesian

form to polar form and vice versa before and after being implemented.

In a similar way, the group rotations in 3D SO(3) (see 4) also de�nes all the

possible spatial rotations, but there are several methods to do it. The traditional

way consists of implementing di�erent rotations independently around each axis,

de�ning the rotation matrix similarly to the bi-dimensional one but adapted to 3D

space, making the idea more intuitive. The most frequently used system of partial

rotations are Euler Angles, rotation matrices whose application order and axes may

vary depending on the convention which has been adopted (here the 3-1-3 case has

been explained, see ??). The problem of this method is known as gimbal lock, which

implies the loss of a degree of freedom (any possible direction of rotation) when two

axes are lined up. This problem resides in the fact that �nding a minimal three-

variable representation is not possible without ambiguity. Fortunately, to solve this

problem other kind of representations have been created. They act in higher spaces

but they remove this possibility. The two main methods of this sort are axis/angle

representation, which requires knowing the resultant direction of the rotation (by

using Euler Rodrigues' formula) and the use of quaternions. Quaternions are an

extension of complex numbers to a four-dimensional one by the form Q = q0 + iq1 +

jq2 + kq3, and where the representation of the point is made by using the three

imaginary units. Hence, the rotation quaternion is de�ned as follows:

Qr = cos
(π

2

)
+ (v1i+ v2j + v3k) sin

(π
2

)

9.1. A world of rotations 145

The main advantage of quaternions over other kind of representations (like Euler

angles) is that they o�er a solution to the singularity or gimbal lock problem,

already mentioned. The problem is solved by the rotation in a four-dimensional

space around an inertial �xed system, which gives the axis no possibility to alignment

(section 4.1.3).

Furthermore the quaternion system is very much compact and because of that it

requires less computational capacity than the representations angle/axis or Euler

angles, as it is possible to see in the following comparative graphs (see [32]):

Method Storage

Rotation matrices 9

Quaternions 4

Axis/angle 3

Table 9.1: Comparative graph about the storage requirements.

Method Multiplies Add/Subtracts Total operations

Rotation matrices 27 18 45

Quaternions 16 12 28

Table 9.2: Comparative graph detailing the comparison of rotation chaining opera-
tions.

Method Multiplies Add/Subtracts sin/cos Total operations

Rotation matrices 9 6 0 15

Quaternions 15 15 0 30

Axis/angle 23 16 2 41

Table 9.3: Comparative graph detailing the vector rotating operations.

146 Chapter 9. Conclusions

9.2 The Inverse Kinematics problem

Furthermore, another three dimensions to de�ne the possible translations must be

considered in addition to the previous three ones, resulting in an hexa-dimensional

space for those elements which can rotate and translate themselves freely in every

direction in space. In the �eld of robotics these elements, are named robotic joints.

The concept of kinematic chain as concatenation of joints and links (it may be easier

by thinking of it as an human arm) is important to realize that all the elements

which take part in the chain must be solved in order to get the end e�ector (the

endpoint) in the desired position. Moreover, a change in a joint a�ects all the joints

after it.

The Inverse Kinematics problem can be solved by geometric or algebraic method

if the chain is simple, but for most applications that becomes impossible. Due to

that reason, it is necessary to use iterative methods to minimize as much as possible

the error between the reached and the desired position when solving this system of

several equations with several variables. One of the most used procedures is the

Jacobian inversion, but it requires a considerable computational e�ort.

9.2.1 Numerical methods and other improvements

In order to reduce this computational e�ort to the minimum, the choice of the

optimization algorithm applied on the error function (comprises of several funtions

and variables) becomes of vital use for this method. There are some algorithms

to �nd the minimum, among the most important of which are the gradient descent,

Newton-Raphson, Gauss-Newton and the Levenberg-Marquardt algorithm. Gradient

descent is maybe the most intuitive one because it goes down in the direction of

the maximum slope until reaching a local minimum. On the other hand, Newton-

Raphson uses successive tangents to approach the root. This method has a faster

convergence but the initial estimation must be chosen carefully, because if the initial

point is far from the minimum, the method may not converge (a comparison bewteen

these algorithms can be seen in �gure 7.6).

9.2. The Inverse Kinematics problem 147

Finally, Levenberg-Marquardt interpolates between Gauss-Newton method (a

Newton-Raphson adaptation but without using second-order derivatives) and gradi-

ent descent. When the current estimation is far from a local minimum, it behaves

like the gradient descent, and when it is close, like Gauss-Newton. This method is

widely considered as the best one, because it is always possible to �nd a minimum

and the convergence is faster and guaranteed.

In addition, another way of improving the algorithms is to work on the problem

by using encapsulation of manifolds. In this way, complex state representations

(which are not Euclidean) can be approached by �nding a neighbourhood of the

point where another kind of algebra can be used without distorting the results. This

procedure, which is a kind of mapping, is used to solve the problem which appears

when the parametrization of the variable has more parameters than the dimension

of the measurement space, making it impossible to �nd an unique result.

Figure 9.1: Local neighbourhood in the manifold M (here the unit sphere) mapped
into Rn (here R2, the plane).

Taking into account all the mentioned problems, the best combination possible

is to use quaternions globally and the previous kind of mapping when local changes

are needed, operating them like in Euclidean spaces.

148 Chapter 9. Conclusions

9.3 Further study �elds

As one can infer, Mathematics o�ers engineering an almost in�nite �eld of possi-

bilities which are not di�cult at all, so the possible ways of improving the current

methods are only a problem of man's imagination, not an infrastructural one. Fol-

lowing along the same line as some of the studied chapters, probably the most clear

path to walk on consists of working on the optimization algorithms, because when

speaking about computational calculations, e�ciency is as important as getting a

good result. In this way, studying the way algorithms work and thinking about new

ideas to get them better is a requirement in order to face the future, and Levenberg-

Marquart is a very good example of improvement by combining previous methods.

There are many possibilities of improving an algorithm: making the code more e�-

cient, parallelizing as much as possible, solving eventual errors, etc.

Another problem which has been treated is that non-Euclidean spaces may ap-

pear during local working, and this reason explains how mathematical tools become

vital to solve resulting problems. In this line, the �eld based on topological research

makes possible the task of �nding a way out when the current system shows weak-

ness. Many problems have been solved so far by using new conceptions of space and

reality, as one can realize only by looking at quaternions. In addition, when dispos-

ing of many options to choose, the decision can be made reasonably depending on

the application, because the system features and the nature of the problem may re-

quire particular conditions. Mathematics allows the improvement of every imperfect

system, the only thing to do is to �rstly imagine how to start this.

To conclude, while working in the computer science �eld, programming new ap-

plications related to Inverse Kinematics may result also interesting. Before starting

the analysis which has been developed, the previous idea was intended to �nd a way

of calibrating a robotic arm by using graph factors (see [68]). It would be interesting

to go other ways by using optimization algorithms in depth to make the range of

possible applications wider. Similarly to that preceding project, many others can be

thought of for improving systems or creating new uses for the current ones. As told

at the beginning, only imagination can set the limits to human progress.

Acknowledgements

Cuando un camino, esclavo de su de�nición, llega a su �n, siempre es conveniente

echar la vista atrás. La retrospectiva nos ayuda a mejorar, a aprender y a madurar,

es la que nos brinda la oportunidad de valorar las cosas. Es también la manera de

contemplar el trabajo realizado y distinguir la dedicación de aquellas personas que

han contribuido a procurar un éxito que, lejos de ser de uno sólo, es de todos los

que han querido que así fuese. Existe la creencia popular de que una persona es el

resultado de sus in�uencias, y en esta a�rmación yo no podría estar más de acuerdo.

También en el ámbito académico. Es por tanto mi intención, aprovechando estas

breves líneas, la de agraceder de corazón a todos aquellos que me han ayudado a

llegar hasta aquí.

En primer lugar, al Colegio San José de Villanueva de la Serena, porque ése fue

el lugar donde comencé a descubrir la naturaleza de un mundo que ahora me parece

mucho más complejo que entonces, el lugar donde más años he pasado en mi vida y

el lugar donde conocí a algunos de mis mejores amigos.

Al Instituto San José, en el que tuve la suerte de disfrutar de la mejor combinación

de profesores posible y que cualquiera hubiera deseado. A ellos les agradezco haber

tratado de inculcarme una de las cosas que más aprecio: la curiosidad. Y la mención

es digna porque consiguieron atraer mi interés hacia casi todo lo que se propusieron.

Mil gracias por ello, pocas cosas existen para mí más valiosas que ésa.

149

150 Chapter 9. Conclusions

A la Universidad de Extremadura y a todos los profesores que he tenido, por

demostrar que una buena enseñanza puede basarse en una relación cercana y por

responder de la mejor manera a la ingente cantidad de preguntas que he formulado

durante estos cuatro años. Especial es la alusión a Carmen Ortiz, Pedro Núñez y

Pablo Bustos por su implicación en este proyecto, que pese a algunos nervios me

ha encantado realizar. Gracias por supervisar mi trabajo y proporcionarme tanto

información como respuesta con interés y entusiasmo.

Al sistema de Educación Pública que ha guiado mi formación, que me ha per-

mitido estudiar una carrera ayudado por las becas y contribuido así a mi futuro, al

mío y al de tantos otros.

Muy especialmente al Colegio Mayor Francisco de Sande por ser mi casa durante

todo este tiempo. Gracias a todas las personas que he conocido allí y que han con-

tribuido a los mejores años de mi vida, gracias por descubrirme la ciudad de Cáceres,

por las innumerables conversaciones y por enseñarme todo lo que esta experiencia me

ha enseñado. Los amigos son para siempre. Aunque el Colegio cierre, nadie podrá

borrarlo jamás de mi recuerdo.

Por último, y de manera particular, gracias a mis padres por apoyarme en todo

momento, por ofrecerme todo lo que he necesitado, por con�ar en mí y por estar

a mi lado siempre compartiendo mis problemas. Su apoyo y sustento han estado y

estarán para mí presentes durante toda la vida.

Appendices

Appendix A

Conversions

A.1 2D rotations

A.1.1 From 2× 2 rotation matrices to complex numbers

In order to rotate by complex numbers a given a vector v = (a, b)T , the �rst step to

follow is expressing it in Cartesian form, in this way:

v = (a, b)T −→ v = a+ ib (A.1)

After that, it must be converted to Polar form, calculating the modulus and

argument of the vector in the complex plane:

|v| = sqrt(a2 + b2) θ = arctan

(
b

a

)
(A.2)

The vector in Polar form is now v = |v|eiθ. Let be a rotation matrix

(
cosφ −sinφ
sinφ cosφ

)
,

the equivalent expression when rotating with complex numbers is rot = eiφ, so the

rotated complex vector in Polar form is v2 = rot cdotv = |v|ei(φ+θ).

153

154 Appendix A. Conversions

A.1.2 From complex numbers to 2× 2 rotation matrices

This process is the opposite of the previous one. Given a complex vector in Polar

form v = |v|eiθ, the way to �nd the Cartesian equivalence is using the Euler identity:

eiθ = cosθ + isinθ. Hence:

v = |v|(cosθ + isinθ) −→ v = (a, b), (A.3)

where a is the real part and b the imaginary one resulting from the product.

The rotation element rot = eiφ is identical to the 2× 2 matrix

(
cosφ −sinφ
sinφ cosφ

)
,

as it was seen before. After that, the way of acting is the usual one.

A.2 3D rotations

The following methods are valid for a right-hand system. The way to

adapt them to a left-hand system will be explained in.

A.2.1 From rotation matrix to Euler angles

The Euler angles can be extracted from the rotation matrix R by inspecting the

rotation matrix in analytical form.

Using the x-convention (3-1-1), which have been used in this document, the

Euler angles can be deduced as:

Φ = arctan

(
R31

R32

)
(A.4)

Θ = arccosR33 (A.5)

Ψ = −arctan
(
R13

R23

)
(A.6)

A.2. 3D rotations 155

Some considerations must be taken into account:

• There are generally two solutions in (−π, π]3. The above formula works only

when Θ is from the interval [0,Π)3.

• In case R33 = 0, Φ,Ψ shall be derived from R11, R12.

• There are many solutions outside of the interval (−π, π]3.

A.2.2 From Euler angles to rotation matrix

The rotation matrix R is generated from the Euler angles by multiplying the three

matrices built by rotations about the axes. The order depends on the convention

used. In case of the x-convention (3-1-3):

R(Φ,Θ,Ψ) = R(Ψ, z) ·R(Θ, x) ·R(Φ, z) (A.7)

R(Φ,Θ,Ψ) =

 cosΨcosΦ− cosΘsinΦsinΨ cosΨsinΦ + cosΘcosΦcosΨ sinΨsinΘ

−sinΨcosΦ− cosΘsinΦcosΨ −sinΨsinΦ + cosΘcosΦcosΨ cosΨsinΘ

sinΘsinΦ −sinΘcosΦ cosΘ


(A.8)

A.2.3 From rotation matrix to Euler axis/angle

If the Euler angle θ is not a multiple of π, the Euler axis r̂ = [rx, ry, rz]
T and the

angle θ can be computed from the elements of the rotation matrix R in the following

way:

θ = arccos

(
1

2
[R11 +R22 +R33 − 1]

)
(A.9)

rx =
R32 −R23

2sinθ
ry =

R13 −R31

2sinθ
rz =

R21 −R12

2sinθ
(A.10)

156 Appendix A. Conversions

A.2.4 From Euler axis/angle to rotation matrix

The matrix for a rotation by an angle θ around an axis in the direction of

r̂ = [rx, ry, rz]
T is de�ned as:

R =

 cosθ + r2x(1− cosθ) rxry(1− cosθ)− rzsinθ rxrz(1− cosθ) + rysinθ

ryrx(1− cosθ) + rzsinθ cosθ + r2y(1− cosθ) ryrz(1− cosθ)− rxsinθ
rzrx(1− cosθ)− rysinθ rzry(1− cosθ) + rxsinθ cosθ + r2z(1− cosθ)


(A.11)

A.2.5 From rotation matrix to quaternions

Given a rotation matrix R, it can be converted to a quaternion

Q = q0 + iq1 + jq2 + kq3 in the way that follows:

q0 =
1

2

√
1 +R11 +R22 +R33 (A.12)

q1 =
1

4q0
(R32 −R23) (A.13)

q2 =
1

4q0
(R13 −R31) (A.14)

q3 =
1

4q0
(R21 −R12) (A.15)

A.2.6 From quaternions to rotation matrix

On the other hand, the rotation matrix corresponding to the quaternion

Q = q0 + iq1 + jq2 + kq3 is given by:

R =

q
2
0 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q0q3 + 2q1q2 q20 − q21 + q22 − q23 −2q0q1 + 2q2q3

−2q0q2 + 2q1q3 2q0q1 + 2q2q3 q20 − q21 − q22 + q23

 (A.16)

A.2. 3D rotations 157

A.2.7 From Euler angles to quaternions

Considering the x-convention (3-1) in Euler angles, the quaternion

Q = q0 + iq1 + jq2 + kq3 can be computed from (Φ,Θ,Ψ) in the following way:

q0 = cos

(
Φ + Psi

2

)
cos

(
Θ

2

)
(A.17)

q1 = cos

(
Φ− Psi

2

)
sin

(
Θ

2

)
(A.18)

q2 = sin

(
Φ− Psi

2

)
sin

(
Θ

2

)
(A.19)

q3 = sin

(
Φ + Psi

2

)
cos

(
Θ

2

)
(A.20)

(A.21)

A.2.8 From quaternions to Euler angles

In the same way, given the rotation quaternion Q = q0 + iq1 + jq2 + kq3,

the x-convention (3-1-3) of Euler angles (Φ,Θ,Ψ) van be computed by:

Φ = arctan

(
q1q3 + q2q0
−(q2q3 − q1q0)

)
(A.22)

Θ = arccos(q20 − q21 − q22 + q23) (A.23)

Ψ = arctan

(
q1q3 − q2q0
q2q3 + q1q4

)
(A.24)

A.2.9 From Euler axis/angle to quaternions

Given the Euler axis r̂ and the angle θ, the associated quaternion

Q = q0 + iq1 + jq2 + kq3 can be calculated as:

q0 = cos

(
θ

2

)
q1 = r̂xsin

(
θ

2

)
q2 = r̂ysin

(
θ

2

)
q3 = r̂zsin

(
θ

2

)
(A.25)

158 Appendix A. Conversions

A.2.10 From quaternions to Euler axis/angle

The opposite conversion, from a rotation quaternion Q = q0 + iq1 + jq2 + kq3, to an

Euler axis/angle system with axis r̂ and angle θ, can be expressed as:

r̂ =
q

‖q‖
, (A.26)

where q = iq1 + jq2 + kq3

θ = 2arccos(q0) (A.27)

Appendix B

Coordinate systems

Since the Euclidean space has no preferred origin or direction, a coordinate system

must be created in order to assign numerical values to points and objects in the space.

In the three-dimensional space, the right-handed and the left-handed coordinate

systems are used to describe positions. The main properties they have are:

• Any right-handed coordinate system can be converted to any other right-

handed coordinate system by rotating it.

• Any left-handed coordinate system can be converted to any other right-handed

coordinate system by rotating it.

• A right-handed coordinate system cannot be converted to a left-handed coor-

dinate system by rotating it.

• A right-handed coordinate system can be converted to a left-handed coordinate

system by using the method which is explained in B.3.

159

160 Appendix B. Coordinate systems

B.1 Right-handed coordinate system

It is the most used system, and the system which has been applied in this document.

In a right-handed coordinate system:

• +x is placed in the right direction.

• +y is placed in the up direction.

• +z is placed in the direction from the plane of the page.

B.2 Left-handed coordinate system

This system is not so used as the previous one, but it is the system adopted for

Robolab (Universidad de Extremadura). In a left-handed coordinate system:

• +x is placed in the left direction.

• +y is placed in the up direction.

• +z is placed in the direction from the plane of the page.

Figure B.1: Comparative between right-handed and left-handed coordinate systems:
x-axis in red, y-axis in green and z-axis in blue.

B.3. Conversion from Right-Handedness to
Left-Handedness 161

B.3 Conversion from Right-Handedness to

Left-Handedness

B.3.1 Conversion of points

Looking at the two systems de�ned, the only di�erence between them is the x-axis

orientation. As a consequence, only changing the direction of this axis is possible to

convert a system in the another one: a point (x, y, z) in the right-handed coordinate

system is converted to a point (−x, y, z) in the left-handed system.

In the left-handed coordinate system, the x-component must be negative, so

expressing this conversion in matrix-vector form the result is:

Pleft =

−xy
z

 =

−1 0 0

0 1 0

0 0 1


xy
z

 = DxPright, (B.1)

where Dx is de�ned to be the diagonal matrix Dx =

−1 0 0

0 1 0

0 0 1

 used when con-

verting from a system to the another one.

B.3.2 Conversion of rotations

In this case, a right-handed point Pright = (x, y, z) must be transformed to a left-

handed one Pleft = (x′, y′, z′), where the e�ect of a rotation is taken into account.

As it has been seen in 4, a rotation over a coordinate axis is written in the

following way:

P ′right = RPright, (B.2)

where R is the rotation matrix, whose shape depends on the axis around which the

rotation is implemented.

162 Appendix B. Coordinate systems

Considering that the conversion of the point after the rotation must be put into

practice as before:

P ′left = DxP
′
right (B.3)

Then:

P ′left = DxP
′
right = DxRPright (B.4)

In the same way, as the conversion is equivalent in both sides, Pright = DxPleft.

Hence:

P ′left = DxRDxPleft = (DxRDx)Pleft = R′Pleft, (B.5)

where the new rotation matrix is R′ = DxRDx, where R is the rotation matrix in

the original system, whose shape depends on the axis around which the rotation is

implemented.

Appendix C

MATLAB Code

C.1 Rotation matrices in 2D

1: function �nal_vector = rotation(vx,vy,theta)

2: s=[0:1:40]*2*pi/40;

3: x1=cos(s);

4: y1=sin(s);

5: plot(x1,y1,'r');

6: arrow([0 0],[vx vy]);

7: xlabel('x-axis');

8: ylabel('y-axis');

9: axis equal

10: vec=[vx;vy];

11: rot=[cos(theta) -sin(theta); sin(theta) cos(theta)];

12: vecR=rot*vec;

13: vx=vecR(1,1);

14: vy=vecR(2,1);

163

164 Appendix C. MATLAB Code

15: pause;

16: �gure;

17: plot(x1,y1,'r');

18: arrow([0 0],[vx vy]);

19: xlabel('x-axis');

20: ylabel('y-axis');

21: axis equal

22: �nal_vector=[vx,vy];

C.2 Homogeneous transformation matrices in 2D

1: function �nal_vector = rotran(vx, vy, theta, tx, ty)

2: vz=1;

3: s=[0:1:40]*2*pi/40;

4: x1=cos(s);

5: y1=sin(s);

6: plot(x1,y1,'r');

7: arrow([0 0],[vx vy]);

8: xlabel('x-axis');

9: ylabel('y-axis');

10: axis equal

11: vec=[vx;vy;vz];

12: Tran=[cos(theta) -sin(theta) tx; sin(theta) cos(theta) ty; 0 0 1];

13: vecR=Tran*vec;

14: vx=vecR(1,1);

15: vy=vecR(2,1);

C.3. Rotation matrices in 3D 165

16: pause;

17: �gure;

18: plot(x1,y1,'r');

19: arrow([0 0],[vx vy]);

20: xlabel('x-axis');

21: ylabel('y-axis');

22: axis equal

23: �nal_vector=[vx,vy];

C.3 Rotation matrices in 3D

1: function �nal_vector = rotation3(vx, vy, vz, psi, theta, phi)

2: s=[0:1:40]*2*pi/40;

3: x1=cos(s);

4: y1=sin(s);

5: z1=cos(s);

6: zero=[0:1:40]*0;

7: hold on

8: plot3(x1,y1,zero,'r');

9: plot3(zero,y1,z1,'r');

10: arrow([0 0 0],[vx vy vz]);

11: xlabel('x-axis');

12: ylabel('y-axis');

13: zlabel('z-axis');

14: axis equal

15: hold o�

166 Appendix C. MATLAB Code

16: %% Psi (rotation around the x-axis)

17: vec=[vx;vy;vz];

18: Rot_psi=[cos(psi) -sin(psi) 0; sin(psi) cos(psi) 0; 0 0 1];

19: vecR=Rot_psi*vec;

20: vx=vecR(1,1);

21: vy=vecR(2,1);

22: vz=vecR(3,1);

23: pause;

24: �gure;

25: hold on

26: plot3(x1,y1,zero,'r');

27: plot3(zero,y1,z1,'r');

28: arrow([0 0 0],[vx vy vz]);

29: xlabel('x-axis');

30: ylabel('y-axis');

31: zlabel('z-axis');

32: axis equal

33: hold o�

34: %% Theta (rotation aroud the y-axis)

35: vec=[vx;vy;vz];

36: Rot_theta=[cos(theta) 0 sin(theta); 0 1 0; -sin(theta) 0 cos(theta)];

37: vecR=Rot_theta*vec;

38: vx=vecR(1,1);

39: vy=vecR(2,1);

40: vz=vecR(3,1);

41: pause;

42: �gure;

C.3. Rotation matrices in 3D 167

43: hold on

44: plot3(x1,y1,zero,'r');

45: plot3(zero,y1,z1,'r');

46: arrow([0 0 0],[vx vy vz]);

47: xlabel('x-axis');

48: ylabel('y-axis');

49: zlabel('z-axis');

50: axis equal

51: hold o�

52: %% Phi (rotation around the z-axis)

53: vec=[vx;vy;vz];

54: Rot_phi=[cos(phi) -sin(phi) 0; sin(phi) cos(phi) 0; 0 0 1];

55: vecR=Rot_phi*vec;

56: vx=vecR(1,1);

57: vy=vecR(2,1);

58: vz=vecR(3,1);

59: pause;

60: �gure;

61: hold on

62: plot3(x1,y1,zero,'r');

63: plot3(zero,y1,z1,'r');

64: arrow([0 0 0],[vx vy vz]);

65: xlabel('x-axis');

66: ylabel('y-axis');

67: zlabel('z-axis');

68: axis equal

69: hold o�

70: �nal_vector=[vx,vy,vz];

168 Appendix C. MATLAB Code

C.4 Homogeneous transformation matrices in 3D

1: function �nal_vector = rotran3(vx, vy, vz, psi, tht, phi, tx, ty, tz)

2: s=[0:1:40]*2*pi/40;

3: x1=cos(s);

4: y1=sin(s);

5: z1=cos(s);

6: zero=[0:1:40]*0;

7: hold on

8: plot3(x1,y1,zero,'r');

9: plot3(zero,y1,z1,'r');

10: arrow([0 0 0],[vx vy vz]);

11: xlabel('x-axis');

12: ylabel('y-axis');

13: zlabel('z-axis');

14: axis equal

15: hold o�

16: if psi =0 then %% Rotation around the x-axis

17: vec=[vx;vy;vz;1];

18: Tran_psi=[1 0 0 tx; 0 cos(psi) -sin(psi) ty; 0 sin(psi) cos(psi) tz; 0 0 0 1];

19: vecR=Tran_psi*vec;

20: vx=vecR(1,1);

21: vy=vecR(2,1);

22: vz=vecR(3,1);

23: pause;

24: �gure;

C.4. Homogeneous transformation matrices in 3D 169

25: hold on

26: plot3(x1,y1,zero,'r');

27: plot3(zero,y1,z1,'r');

28: arrow([0 0 0],[vx vy vz]);

29: xlabel('x-axis');

30: ylabel('y-axis');

31: zlabel('z-axis');

32: axis equal

33: hold o�

34: end if

35: if tht =0 then %% Rotation around the y-axis

36: vec=[vx;vy;vz;1];

37: Tran_tht=[cos(tht) 0 sin(tht) tx; 0 1 0 ty; -sin(tht) 0 cos(tht) tz; 0 0 0 1];

38: vecR=Tran_tht*vec;

39: vx=vecR(1,1);

40: vy=vecR(2,1);

41: vz=vecR(3,1);

42: pause;

43: �gure;

44: hold on

45: plot3(x1,y1,zero,'r');

46: plot3(zero,y1,z1,'r');

47: arrow([0 0 0],[vx vy vz]);

48: xlabel('x-axis');

49: ylabel('y-axis');

50: zlabel('z-axis');

51: axis equal

52: hold o�

53: end if

170 Appendix C. MATLAB Code

54: if phi =0 then %% Rotation around the z-axis

55: vec=[vx;vy;vz;1];

56: Tran_phi=[cos(phi) -sin(phi) 0 tx; sin(phi) cos(phi) 0 ty; 0 0 1 tz; 0 0 0 1];

57: vecR=Tran_phi*vec;

58: vx=vecR(1,1);

59: vy=vecR(2,1);

60: vz=vecR(3,1);

61: pause;

62: �gure;

63: hold on

64: plot3(x1,y1,zero,'r');

65: plot3(zero,y1,z1,'r');

66: arrow([0 0 0],[vx vy vz]);

67: xlabel('x-axis');

68: ylabel('y-axis');

69: zlabel('z-axis');

70: axis equal

71: hold o�

72: end if

73: �nal_vector=[vx,vy,vz];

Bibliography

[1] B. Ash, Robert Algebra: Group Fundamentals, p. 1, Department of Mathe-

matics, University of Illinois, Urbana-Champaign.

[2] University of Syracuse Self-instructional Mathematics Tutorials, Unit 1:

Algebra, Department of Mathematics, University of Syracuse, USA.

[3] Stanislav, Jabuka Chapter 1: Topological spaces, p. 1, Department of Math-

ematics and Statistics, University of Nevada, Reno, 2009.

[4] Campos González, Neila El Espacio Euclídeo, p. 1-3, Departamento de

Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria.

[5] Euclidean Space - Mathematics and Computing Euclidean space de�ni-

tions: http://www.euclideanspace.com/maths/geometry/space/euclidean/, spe-

cialized website.

[6] Department of Mathematics Lecture notes on Linear Algebra: Inner

(scalar) products: Euclidean space, p. 3-4, College of Liberal Arts & Sciences,

University of Kansas, 2008.

[7] Melving, George Linear Algebra, p. 101-102, Mathematics Department, Uni-

versity of California, Berkeley, USA, 2012.

[8] L. Rueda, Sonia Matemáticas I: Espacio Euclídeo, p. 2-4, Departamento de

Matemática Aplicada, Escuela Técnica Superior de Arquitectura, Universidad

Politécnica de Madrid, 2008.

[9] Sjamaar, Reyer Manifolds and Di�erential Forms, p. 1-5, Department of

Mathematics, Cornell University, Ithaca, New York.

171

172 Bibliography

[10] Ramírez Galarza, Ana Irene Geometría Analítica: Una introducción a la

geometría, p. 303-304, UNAM, 2004.

[11] G. Ivancevic, Vladimir; T. Ivancevic, Tijana Lecture Notes in Lie

Groups, p. 18, Cornell University Library, 2011.

[12] Departamento de Xeometría e Topoloxía Grupos de Lie, p. 4, Facultade

de Matemáticas, Universidade de Santiago de Compostela.

[13] Rodríguez, Miguel A. Álgebras de Lie, p. 7, Departamento de Física Teórica

II, Facultad de Ciencias, Universidad Complutense de Madrid, 2007.

[14] Blanco Caraco, José Luis A tutorial on SE(3) transformation parametriza-

tions and on-manifold optimization, p. 37-41, Departamento de Ingeniería de

Sistemas y Automática, MAPIR Group, Universidad de Málaga, 2010.

[15] Kumar, V. Rigid Body Motion and the Euclidean Group, p. 1-4, University of

Pennsylvania.

[16] López de Teruel, Pedro E.; Ruiz, A. Introducción a las Lie Algebras

(aplicadas a la visión por computador), s. 4-14, Arti�cial Perception and Pattern

Recognition Research Group (PARP), Departamento de Ingenería y Tecnología

de Computadores y Departamento de Informática y Sistemas, Universidad de

Murcia.

[17] Ballan, Luca Rigid Transformations: The geometry of SO(3) and SE(3), s.

38-43, Mathematical Foundations of Computer Graphics and Vision, Computer

Vision and Geometry Lab, Institute of Visual Computing, Zürich.

[18] Mas Sole, Javier Física Matemática, p. 122-123, Universidade de Santiago

de Compostela, 2011.

[19] Ballan, Luca Metrics on SO(3) and Inverse Kinematics, s. 4-5, Mathemat-

ical Foundations of Computer Graphics and Vision, Computer Vision and Ge-

ometry Lab, Institute of Visual Computing, Zürich.

[20] van Beveren, Eef Some notes on group theory, p. 57-58, Faculdade de Ciên-

cias e Tecnologia, Universidade de Coimbra, 1998.

Bibliography 173

[21] Triola, Cristopher Special Orthogonal groups and rotations, p. 4, University

of Mary Washington, 1998.

[22] Selig, J.M. Introductory Robotics, p. 9, Department of Electrical and Elec-

tronic Engineering, South Bank Polytechnic, 1992.

[23] Selig, J.M. Introductory Robotics, p. 8-9, Department of Electrical and Elec-

tronic Engineering, South Bank Polytechnic, 1992.

[24] Quiroga-Barranco, Raúl La geometria de dos fórmulas de Euler, Revista

Miscelánea Matemática, p. 106-110, Centro de Investigación en Matemáticas

(CIMAT), México, 2007.

[25] Selig, J.M. Introductory Robotics, p. 10-12, Department of Electrical and Elec-

tronic Engineering, South Bank Polytechnic, 1992.

[26] Sánchez Castaño, Alberto; Sánchez Hernández, José Germán Ma-

nipulación del espacio: Transformaciones y proyecciones, p. 12-14, Ingeniería en

Informática, Facultad de Ciencias, Universidad de Salamanca.

[27] Carreras, Ángel M. Tópicos en Álgebra Abstracta: Ángulos de Euler, s.

2-4, University of Georgia, 2009.

[28] MathWorld Euler Angles: http://mathworld.wolfram.com/EulerAngles.html,

specialized website.

[29] Deep Mesh Gimbal Lock: http://www.deepmesh3d.com/help/axis.htm, special-

ized website.

[30] Gandullo Ávila, José Alberto Simocap: Sistema de captura del

movimiento, p. 85-86, Escuela Técnica Superior de Ingeniería Informática, Uni-

versidad de Sevilla, 2010.

[31] Perumal, Logah Quaternion and Its Application in Rotation Using Sets of

Regions, p. 40-43, Multimedia University, Faculty of Engineering and Technol-

ogy, Melaka (Malaysia), 2011.

[32] 3D Rendering 3D Rendering by Wikipedians, PediaPress.

174 Bibliography

[33] Van Verth, Jim Game Developers Conference: Understanding Quaternions,

s. 24-26, Software Engineering Department, Google, 2013.

[34] T. Mason, Matthew Lecture 7: Representing Rotation, Mechanics of Ma-

nipulation, s. 13, Robotics Institute, Carnegie Mellon University, Pittsburgh,

2013.

[35] M. Brannon, Rebecca Rotation: A review of useful theorems involving

proper orthogonal matrices referenced to three-dimensional physical space, p. 20-

21, Computational Physics and Mechanics Department, Sandia National Labo-

ratories, Albuquerque, 2002.

[36] de J. Ramírez, Miguel Automatización de Sistemas de Manufactura, s. 2,

Instituto Tecnológico de Monterrey, México.

[37] Norton, R. L. Kinematics and Dynamics of Machinery, C.2, p. 32, McGraw-

Hill Companies, 1961.

[38] Norton, R. L. Kinematics and Dynamics of Machinery, C.2, p. 33-34,

McGraw-Hill Companies, 1961.

[39] Barrientos, Antonio; Peñín, Luis Felipe; Balaguer, Carlos,

Aracil, Rafael Fundamentos de Robótica, p. 95, Universidad Politécnica de

Madrid, McGraw-Hill, 1997.

[40] Cortés Parejo, José La representación Denavit-Hartenberg, p. 1, Departa-

mento de Matemática Aplicada I, Universidad de Sevilla, 2008.

[41] Grupo de Investigación de Neuroingeniería biomédica y bioinge-

niería Prácticas de Robótica utilizando Matlab: Cinemática de robots, Univer-

sidad Miguel Hernández de Elche.

[42] Moya Pinta, Diego Armando Modelo y análisis cinemático de un robot

manipulador esférico industrial aplicando Matlab, p. 34-35, Escuela Politécnica

Nacional, Facultad de Ingeniería Mecánica, Universidad de Quito, 2010.

Bibliography 175

[43] Barrientos, Antonio; Peñín, Luis Felipe; Balaguer, Carlos,

Aracil, Rafael Fundamentos de Robótica, p. 97-98, Universidad Politécnica

de Madrid, McGraw-Hill, 1997.

[44] Atrash H., Amin Lecture 8: Direct Kinematics, s. 7-26, School of Computer

Science, University of Southern California.

[45] Barrientos, Antonio; Peñín, Luis Felipe; Balaguer, Carlos,

Aracil, Rafael Fundamentos de Robótica, p. 99, Universidad Politécnica de

Madrid, McGraw-Hill, 1997.

[46] Íñigo Madrigal, Rafael; Vidal Idiarte, Enric Robots industriales ma-

nipuladores, p. 52-53, Universidad Politécnica de Catalunya, Edicions UPC,

Barcelona, 2002.

[47] San Martín López, José Tesis Doctoral: Aportaciones al diseño mecánico

de los entrenadores basados en realidad virtual, Departamento de Arquitectura

y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Arti-

�cial, Universidad Rey Juan Carlos, Madrid, 2007.

[48] Ramírez Benavides, Kryscia Daviana Robótica: Cinemática Inversa del

Robot, s. 6-13, Escuela de Ciencias de la Computación e Informática, Universidad

de Costa Rica.

[49] Iles, Patricio; Ramos, Gabriel Capítulo II: Locomoción de Sistemas

Robóticos, p.30-32, Universidad Técnica del Norte, Ibarra (Ecuador).

[50] Ruíz González, Julio Douglas Antonio Robotics, p.65, Atlantic Interna-

tional University, North Miami, Florida, 2006.

[51] Ramírez Benavides, Kryscia Daviana Robótica: Cinemática Inversa del

Robot, s. 31-38, Escuela de Ciencias de la Computación e Informática, Univer-

sidad de Costa Rica.

[52] Ba°inka, Luká²; Berka, Roman Inverse Kinematics: Basic Methods, p.

4-5, Department of Computer Science and Engineering, Czech Technical Uni-

versity, Prague.

176 Bibliography

[53] Serna Martín, Alberto; Yuste Gallego, Pedro Caso Práctico IV:

Derivación Numérica, p. 6, Métodos Numéricos de la Ingeniería, Escuela Politéc-

nica, Universidad de Extremadura, 2013.

[54] Abia Vian, José Antonio Tema 7: Polinomios de Taylor, p. 1, Departa-

mento de Matemática Aplicada, Escuela de Ingenierías Industriales, Universidad

de Valladolid.

[55] Departament de Matemàtica Aplicada II Tema 9: Polinomio de Taylor

en varias variables, p. 2, Universidad Politècnica de Catalunya, Barcelona.

[56] Wang, Xu Method of Steepest Descent and its Applications, p.1, Department

of Engineering, University of Tenessee, 2008.

[57] Hauser, Kris Lecture 4: Gradient Descent, p. 1-2, Department of Computer

Science and Informatics, Indiana University, 2012.

[58] Anstee, Richard The Newton-Raphson method, p. 1-2, Department of Com-

puter Science, University of British Columbia.

[59] Lambers, James Lecture 9 Notes: Newton's Method, p. 1-7, Department of

Mathematics, University of Southern Mississippi, 2012.

[60] Börlin, Niclas Non-linear Optimization: Least-squares Problems - The

Gauss-Newton method, s. 10-14, Department of Computing Science, Umeå Uni-

versity, 2007.

[61] Zinn-Björkman, Leif Numerical Optimization using the Levenberg-

Marquardt Algorithm, s. 1-6, Department of Mathematics, University of Utah.

[62] Ranganathan, Ananth The Levenberg-Marquardt Algorithm, p. 1-3, Senior

Research Scientist, Honda Research Institute, USA.

[63] Brunet, Florent Contribution to Parametric Image Registration and 3D

Surface Reconstruction: Basics on Continuous Optimization, Thesis for the de-

gree of Doctor of the Université d'Auvergne.

Bibliography 177

[64] Casarrubias Segura, Fidel; Tamariz Mascarúa, Ángel Elementos de

Topología de Conjuntos, p. 95, Sociedad Matemática Mexicana, Universidad

Nacional Autónoma de México, 2011.

[65] G. Landers, Robert State Space Representation: Mechanical and Aerospace

Control Systems, s.2, University of Science & Technology, Missouri.

[66] Hertzberg, Christoph DIPLOMARBEIT in Mathematik und Informatik: A

Framework for Sparse, Non-Linear Least Squares Problems on Manifolds, Man-

ifolds, p. 3-8 , Universität Bremen, 2008.

[67] Hertzberg, Christoph; Wagner, René; Frese, Udo; Schröder, Lutz

Integrating Generic Sensor Fusion Algorithms with Sound State Representations

through Encapsulations of Manifolds, p. 1-8 , Universität Bremen.

[68] Paoletti Ávila, Mercedes; Yuste Gallego, Pedro Calibración del

robot Loki mediante factores grá�cos, Escuela Politécnica, Universidad de Ex-

tremadura, 2014.

[69] Paoletti Ávila, Mercedes; Yuste Gallego, Pedro Introducción al fun-

cionamiento de los factores grá�cos de GTSAM, Escuela Politécnica, Universi-

dad de Extremadura, 2014.

[70] Paoletti Ávila, Mercedes Trabajo Fin de Grado: Cinemática Inversa en

Robots Sociales, Escuela Politécnica, Universidad de Extremadura, 2014.

	Introduction
	Motivation
	Objectives in each chapter
	Related projects

	Fundamentals of important mathematical concepts
	Basic algebraic structures
	Euclidean space
	Properties
	Important derivated notions
	Euclidean norm
	Distance
	Angles
	Orthogonality

	Manifolds
	Definitions
	Charts
	Atlases
	Transition function

	General example

	Concepts about groups
	Rigid transformations
	Congruences and Symmetry group
	Lie groups
	Lie algebras

	The special Euclidean Group in three dimensions, SE(3), and relevant subgroups
	Subgroups

	The exponential map
	The logarithm map

	The group SO(2): Bi-dimensional rotations
	Planar rotations and translations
	2D translations
	2D rotations
	Rotation by complex numbers

	Method for defining planar movements

	The group SO(3): Three-dimensional rotations
	Spatial rotations and traslations
	3D translations
	Rotation by Euler angles
	The problem of gimbal lock
	Rotation by Euler axis/angle
	Euclidean vectors rotation by Rodrigues formula

	Rotation by quaternions

	Method for defining spatial movements

	Forward Kinematics
	Structure and components of the kinematic chain
	Links
	Joints

	Forward kinematics resolution by homogeneous transformation matrices
	Denavit-Hartenberg representation
	Denavit-Hartenberg parameters
	Denavit-Hartenberg algorithm for obtaining the forward kinematics model:
	Some examples for better understanding: Three-link planar manipulator (see RIM02)
	Some examples for better understanding: Anthropomorphic arm

	Inverse Kinematics
	Important points when solving Inverse Kinematics
	Analytical methods
	Solution by geometric methods
	Example of a three-DOF-robot geometric resolution

	Solution by algebraic methods
	Example of a Three-DOF-spherical-arm robot algebraic resolution

	Iterative methods
	Solution by the Jacobian inversion method
	Iterative model

	Numerical methods and their applications to solve the Inverse Kinematics Problem
	Taylor's Theorem
	Taylor's theorem in one variable
	Taylor's Theorem for multivariable functions

	Optimization methods to solve equations
	Gradient descent
	Descent gradient algorithm

	Newton-Raphson Method
	Newton-Raphson method to solve one-variable functions
	Newton-Raphson method to solve and minimize multivariable functions

	Gauss-Newton Method
	Deduction from the Newton-Raphson method

	Levenberg-Marquardt
	Levemberg-Marquardt's aim
	Levenberg-Marquardt's formula

	Manifolds in order to avoid non-Euclidean spaces
	Manifolds as state representations
	Encapsulation of manifolds
	Summary of properties
	Consequences

	Generic definition

	Examples
	Manifold approach to vector space Rn
	Manifold approach to SO(2)

	Conclusions
	A world of rotations
	The Inverse Kinematics problem
	Numerical methods and other improvements

	Further study fields

	Acknowledgements
	Conversions
	2D rotations
	From 22 rotation matrices to complex numbers
	From complex numbers to 22 rotation matrices

	3D rotations
	From rotation matrix to Euler angles
	From Euler angles to rotation matrix
	From rotation matrix to Euler axis/angle
	From Euler axis/angle to rotation matrix
	From rotation matrix to quaternions
	From quaternions to rotation matrix
	From Euler angles to quaternions
	From quaternions to Euler angles
	From Euler axis/angle to quaternions
	From quaternions to Euler axis/angle

	Coordinate systems
	Right-handed coordinate system
	Left-handed coordinate system
	Conversion from Right-Handedness to Left-Handedness
	Conversion of points
	Conversion of rotations

	MATLAB Code
	Rotation matrices in 2D
	Homogeneous transformation matrices in 2D
	Rotation matrices in 3D
	Homogeneous transformation matrices in 3D

	Bibliography

