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“We must maintain that mathematical geometry
s not a science insofar as we understand

by space a visual structure that can be

filled with objects, it is a pure

theory of manifolds”.,

- Hans Reichenbach (1891-1953) -
- The Philosophy of Space and Time -






Abstract

The following document is intended to describe what is hidden behind the Inverse
Kinematics problem and all the knowledge which is needed to explain it. In order
to accomplish this purpose, the main mathematical concepts and their application
to engineering will be developed in detail. Nevertheless, since the whole process
required to characterize a spatial movement is really complex, some simplifications
and middle steps must be treated before. Taking this reason into account, many
examples have been included along this work to make the understanding easier when

progressing.

Finally, the basic ideas named above will be extended by applying some improve-
ments on the conventional systems. To achieve it, different numerical methods or

mathematical possibilities will also be introduced and briefly discussed.
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Chapter 1
Introduction

The relationship between mathematics and engineering is as old as mankind, both
of them being bound together by the optics of the common sense. This union, in
the shape of which both theory and practice develop and complement each other,
has offered society the possibility of transforming the world and of inventing models
out of thin air to explain the reality of things, and the fertility and attractiveness of
this bond still has people flocking to exploit it. Writing the world anew is the most
ambitious game there is — it knows no limits and no end. All the methods and the
tricks used so far cannot begin to cover the entirety of creation itself. They are but
insufficient patches. All the struggle, the attempts and the discoveries, fundamental
in themselves, no doubt — yet still lacking. It is the grandeur of science that embodies
the promise to answer all questions, conceivable or not by the human mind, but the

certainty of the most impressive of them are an impossible dream.

The following work takes its inspiration from mathematics to describe and si-
mulate something so purely tied to the field of physics such as directed movement.
When interacting with our environment, we are habitually witnesses of the meaning
of inverse kinematics, yet our eyes have gotten so used to it, that we do not stop to
ask how or why anymore. There is no doubt that when engineering runs into such a
question the search for an answer becomes an essential part of following this path.
In our case, the study of inverse kinematics is fundamental for the development of

disciplines such as robotics, artificial vision or videogames.

25



26 Chapter 1. Introduction

Inverse kinematics is a relatively new study field, but its usefulness goes beyond
the immediate and unconscious relationship between robotics and science fiction
that the Hollywood influence has conditioned us to see. Robots are present in many
aspects of daily life and in industry and their design requires the intertwining of
knowledge in the fields of mechanics, computer science, electronics, control, physics
and mathematics. The world of robotics we see today still has a long way to go before
it reaches the heights imagined by Isaac Asimov but the presence of these machines in

manufacturing and even in the service of people grows more and more with each day.

As can be inferred, this project does not pretend to explain the entire develop-
ment which, aside from being too complex, would also prove too wide for it to be
possible to cover it, but it seeks to present the most important tools to begin to com-
prehend this world. The most pure generic concepts will be treated in every case,
from what is necessary to look at the hexa-dimensional space where our problem is
placed to the most important definitions in mechanics which allow us to catch a short
glimpse of how robotic arms can be articulated. To analyse this aspect even more
deeply, the end of this report will also include some of the most innovative techniques
used in solving the inverse kinematics problem via the use of algorithms. However,
this would not prove appropriate without previously having skilfully deciphered the

fundamentals on which the pillars of our problem is built on.

As of now, an universe comprised of orientations, effects, consequences and un-
known variables opens itself to the possibility of being solved. With the aim of mak-
ing its interpretation easier for the future audience, this work represents the struggle
of adapting (as much as possible) the mathematical language which although at

times seems chaotic, has proved itself fundamental for the progress of technology.
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Introduccion

La relacién entre la matemética y la ingenieria es tan antigua como el hombre, y
ambas estan ligadas desde la 6ptica del mas estricto sentido comiin. Esta union, en
que la teoria y la practica se desarrollan y complementan en conjunto, ha brindado
al hombre la posibilidad de transformar el mundo, le ha permitido inventar patrones
de la nada para explicar la realidad de las cosas. Y es tan fértil el matrimonio y su
atractivo tan potente, que la curiosidad de acercarse a la gallina de los huevos de
oro es irresistible. Jugar a escribir el mundo es el mas ambicioso de los propositos,
pues es un proposito sin final. Todos los trucos, artimanas y ardides que han po-
dido idearse hasta hoy han resultado insuficientes parches de la creacion. Todos los
esfuerzos, tentativas y descubrimientos, sin embargo, fundamentales. La grandeza
de la ciencia es la promesa de respuesta a todos los interrogantes que nadie pueda

plantearse, pero la certeza de que los mas imponentes son inalcanzables en una vida.

El trabajo que sigue a continuacién se nutre de las matemaéticas para describir
y simular algo tan fisico como el movimiento dirigido. Al interactuar con nuestro
entorno, asistimos habitualmente al significado de la cinemética inversa con unos
ojos tan acostumbrados a lo comin que no plantean la pregunta del cémo. Sin
embargo, cuando los propositos de la ingenieria se topan con tal interrogante, la
bisqueda de una respuesta se hace imprescindible para continuar el camino. En el
caso que nos ocupa, el estudio del problema de cineméatica inversa es fundamental

para el desarrollo de disciplinas como la robética, la visiéon artificial o los videojuegos.

La cinematica inversa es un estudio relativamente reciente, pero su utilidad se
escapa mas alla de la relacion casi inmediata e inconsciente que Hollywood nos condi-
ciona entre la roboética y la ciencia ficcion. Los robots estan presentes en numerosos
campos de la vida cotidiana y la industria, y para su diseno es necesario entrelazar
conocimientos sobre mecdanica, informética, electronica, control, fisica y matematica.
El mundo de la robdtica no es todavia comparable al que Isaac Asimov se afano en
construir, pero dia tras dia se multiplica la presencia de estas maquinas en los pro-

cesos de fabricaciéon o incluso al servicio méas directo de las personas.
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Como bien puede inferirse, la pretension de este proyecto no consiste en explicar
todo un desarrollo que, ademéas de complejo, resultaria inabordable, sino que presen-
tara las herramientas mas importantes para iniciarse a la comprension de este mundo.
Tan so6lo los conceptos mas puramente genéricos serdn tratados en cada caso, desde
lo necesario para mirar al espacio hexadimensional donde se asienta nuestro pro-
blema hasta las definiciones méas importantes sobre mecanica que permiten entrever
someramente la manera en que los brazos robéticos pueden ser articulados. A modo
de ampliacion, se incluiran también al final de esta memoria algunas de las técnicas
més innovadoras que se utilizan para resolver mediante algoritmos el problema cine-
matico inverso, pero esto no resultaria apropiado sin haber descifrado previamente

con soltura los mas basicos cimientos que conforman la armadura del asunto.

De aqui en adelante se descubre un universo de orientaciones, efectos, consecuen-
cias e incognitas que resolver. Con el &nimo de facilitar su interpretacion al futuro
publico, este trabajo representa el esfuerzo por adaptar en la medida de lo posible
un lenguaje matematico que, si bien a veces resulta caotico, se ha demostrado fun-

damental para progresar en el desarrollo de las tecnologias.

Figure 1.1: Robots working in manufacturing, clear example of the use of inverse
kinematics.
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1.1 Motivation

This work is mainly motivated by the attention in three particular issues:

researching, mathematics and robotics.

Research is the motor of progress and the cause of most of the advances. A very
important part of the discoveries and improvements is the result of the work of many
university research staff, a benefit which should be appreciated and valued with in-
vestment. Research, the R&D itself, has an effect on many areas of society and also
on the economy and competitiveness of countries. University means research, and
its prestige can be measured by their researchers’ standing and the quality of their
works. Since research is a consequence of curiosity, people can simultaneously both

help towards society’s progress and prove their limits.

Mathematics is something usually loved or completely hated. There is no middle
term in this discussion. As the rest of sciences, it must be built step by step but it
becomes more interesting as time goes on, when one can find out the way in which
all its subfields perfectly fit each other. The attraction of mathematics lies in the
application of logic to solve problems, and analysing this structure in depth has been

a truly interesting road along the entire degree.

Finally, robotics and the labour of the research group Robolab have also been
very important in making the decision to start this project. Having had a look at
the world of robotics in a more personal way and observed how people work inside it
and the huge open fronts they must face at the same time, it is impossible not to feel
interested in this study. Thanks to getting involved in this field, some of the secrets
about how a robot can move or “think” have started to clear up. In addition, the
chance to admire how difficult it is to simulate the simplest human behaviour has

allowed the admiration of a work which people think is much easier than it really is.
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1.2 Objectives in each chapter

The goals this work follows are summarized chapter by chapter below. In this way,

the project is intended to do the following:

e Chapter 2 (see 2): To describe what the Euclidean space is and its properties,
the idea of manifold, the concept of mathematical group and Lie groups and

the exponential map.

e Chapter 3 (see 3): To explain the way of getting rotations and translations

in the bi-dimensional space and the most known methods to do it (SO(2)).

e Chapter 4 (see 4): To explain the way of getting rotations and translations

in the three-dimensional space and the most known methods to do it (SO(3)).

e Chapter 5 (see 5): To present the fundamentals of forward kinematics: the
structure and components of the kinematic chain and the different methods to

solve the forward kinematics problem.

e Chapter 6 (see 6): To present the fundamentals of inverse kinematics: the
basis to consider and the difference between analytical and iterative methods

when solving the inverse kinematics problem.

e Chapter 7 (see 7): To explain the application of some numerical methods in
order to minimize the function of error and reaching the best solution: gradient

descent, Newton-Raphson and Levenberg- Marquardt.

e Chapter 8 (see 8): To apply the encapsulation of manifolds in order to make
easier algorithms to deal with state representations in SO(2) and SO(3).
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1.3 Related projects

At the beginning this project was orientated to a different matter: the calibration
of inverse kinematics systems using graph factors by MATLAB and, especially
focusing on the robot Loki (an humanoid robot developed by Robolab). When
working on this task, which in the ended proved to be unsuccessful, some results
were shown to explain the reasons why the method failed. These analyses are con-
tained in the papers Calibracién del Robot Loki mediante factores graficos
(see [68]) and Introduccién a los factores graficos de GTSAM (see [69]), both
written in Spanish with Mercedes Paoletti Avila while working with a scholarship
in collaboration with the Computer Technology department and the Mathematics

department.

In the same line of study, the project titled Cinemaética inversa en robots
sociales (Inverse Kinematics in social robots, see) describes a way of looking at the
inverse kinematics problem for robots which are focussed on social tasks. To do that,
the general solution to the Inverse Kinematics problem by the method of Levenberg-
Marquardt (see 7.33) is perfectly detailed and it represents a very good complement

to the ideas which will be mentioned in this work.

Figure 1.2: Humanoid robot Loki in Robolab, which was used in the attempt to
calibrate the solution to the Inverse Kinematics problem by using GTSAM.






Chapter 2

Fundamentals of important

mathematical concepts

Since the beginning, the task of describing reality has become a natural necessity to
the human being. But how can one explain the physical world and its behaviour?
How can one describe the way in which things interact? To manage this, an ad-
mirable tool is required. Fortunately, after much development and improvement
throughout History, this tool is now real and can be used by society: it is Math-
ematics which must be congratulated for allowing us to reach a point in evolution
where the possibility of explaining anything, with more or less complexity, is now so
much in our grasp, that we can explain the way in which something works which we

previously considered to be magic.

When facing an engineering project, the mathematical basis must be firstly stud-
ied and the required concepts introduced, especially the most concrete ones which can
escape the common general knowledge. Hence, this work, whose goal is to describe
and analyse the physical position and orientations, must mention the Mathematics
which makes it possible before proceeding to the description related to how it makes
it.

38
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The purpose of this chapter is to present several mathematical concepts to de-
fine and parametrize dimensions or spaces. This is needed because it is otherwise
impossible to specify an orientation without knowing where it is defined, which also
applies to kinematics. Knowing the different ways of representing space becomes
vital considering that this idea is going to work as a background in the following

chapters.

2.1 Basic algebraic structures

Definition 1 A binary operation on a set is a calculation that combines two

operands (elements of the set) to produce another element of the set.

Definition 2 A group is a non-empty set G' in which a binary operation
(a,b) — ab

is defined satisfying the following properties (see [1]):

1. Closure: If two elements a and b belong to G, then ab is also in G.
2. Associativity: a(bc) = (ab)c for all a,b,c € G.

3. Identity: There is an element 1 € G such that al = a, where a can be any

element in G.

4. Inverse: If a is in G, then there is an element a=' in G such that aa™! =

a ta=1.

A group G is abelian if the binary operation is commutative (ab = ba) for all
a,beqd.
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e [xample. The integers:

The set of integers Z is a group because it satisfies the properties above with

the addition operation:

1. For any two integers a, b, the sum a + b = ¢ and ¢ always belongs to Z,

never to any set such as fractions.

2. For all the integers a, b and c, it is satisfied the associativity property
(a+b)+c=a+ (b+c).
3. There is an element (0 in this case) which acts like the identity element

for any integer a: a +0 =0+ a = a.

4. For every integer a, there is an integer b such that a+b =b+a = 0. Then

the inverse element b is denoted —a.

Definition 3 Algebra is a branch of mathematics which uses mathematical state-
ments to describe relationships between things which can vary. When a mathemati-
cal statement describes a relationship, letters are used to represent the quantity that
varies, since it s not a fived amount. These letters and symbols are referred to as
variables. The mathematical statements that describe relationships are expressed us-
ing algebraic terms, expressions, or equations (mathematical statements containing

letters or symbols to represent numbers) (see [2]).

Definition 4 A topology T on a set S is a collection of subsets of S which verify
the following rules (see [3]):

1. The empty set 0 € T, where () is the empty set. In addition, the set S € T.

2. Any union of elements of T is an element of T. Let be two elements O €
T, 02 € T, then 01 NOyeT.

3. Any intersection of finitely many elements of T is an element of T'. Let be two
elements O1 € T,09 € T, then O UOy € T.

The three restrictions before are called the axioms of topology. If they are satisfied,
then T s called a topology on S. A topological space is a set S with a topology T
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2.2 Euclidean space

Definition 5 A space E is an Euclidean space when it is a kind of geometric space
where Fuclid’s postulates are satisfied. The extended real number line, the Fuclidean
plane or the three-dimensional space are special cases of Fuclidean spaces with one,
two or three dimensions. Moreover, the abstract concept of Euclidean space is also

generalized to higher dimensions.

It is possible to define n-dimensional Fuclidean space, denoted E™, as all the real

vector space equipped with an inner product (or scalar product).

The traditional approach to geometry defines Euclidean space to have the follow-

ing properties:

1. A straight line may be drawn from any one point to any other point, so only

two points are needed to define a line.
2. A finite straight line may be produced to any length in a straight line.

3. A circle may be described with any centre at any distance from that centre

(radius).
4. If two angles are right angles (g), then they are congruent (identical).

5. At an outer point to a line, it can be only defined a parallel line to the first

one.

The enumeration above is known as Euclid’s postulates.



2.2. Fuclidean space 37

As the inner product (or scalar product) is defined, then Euclidean space acts
like a linear real vector space. Hence, the vector in the vector space corresponds to
the points of the Euclidean space which can be defined by using terms of a linear

combination of orthogonal basis vectors:

P=o; -vi+ay-vs+...+a, v, (2.1)

where P is the vector representation expressed as a point in the Euclidean space,
v; are the different basis vector (one for each dimension) and «; are the scalar mul-

tipliers, used in order to combine the different vector basis to define a concrete point.

On the other hand, the scalar product of two vectors returns a single

scalar and it is algebraically defined in R™ as:

n
vy - Vg = E V1V2; = V11V21 + VigV2 + ... + V102, (2.2)
i=1
It can also be seen as the product of a row matrix by a column matrix:
V21
V22
V11,V12y .-+, V1p . = VU11V21 + V19V29 + ... + V1,V2, (23)
Van,

2.2.1 Properties

Since the usual scalar product is defined, all its properties are satisfied in Euclidean

spaces E (see [4]):

e Commutativity: vi - v9 = v - 11
e Distributivity: vy - (vg + v3) = vy - Vo + vy - V3
e Outplacement of the scalar factor: a(vy - vg) = (awy) - vy = vy - (Qvg)

e Definite positive: v-v >0, Vv € E,andv-v=0< v =0.
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In the same way, as it has been seen, the FEuclidean space contains two kind of
mathematical objects: scalars and vectors. Hence, the properties of this space can

be defined in terms of vector addition and scalar multiplication (see [5]):

e Commutativity of addition: vy + vy = v9 + v

Associativity of addition: vy + (ve + v3) = (v1 + v2) + v3

Identity element of addition: v+ 0 =wv

Inverse element of addition: —v. Then v + (—v) =0

Distributivity of scalar multiplication with respect to vector addition:

(v1 + Vo) = vy + vy

Compatibility of scalar multiplication with field multiplication:

ap (V) = (pag)v

Identity element of scalar multiplication: 1lv = v

et

. kil
Uy

Y2 Sealar multiplication

-

(v + ) =
ey 4 etlg

Vector addition
' Vector addition '
i

-

Scalar multiplication

Figure 2.1: Graphic representation of the possible operation with vectors and their
equivalences.
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2.2.2 Important derivated notions

Some definitions are important when working in Euclidean spaces, because they will

be used later in deductions and explanations:

2.2.2.1 Euclidean norm

Definition 6 The norm of the vector v € E™ is defined by (see [6]):
ol = Voo (2.4
This expression can also be written as:
n 1/2
ol = (Z U?) (2.5)
i=1

Definition 7 A vector v € E" is an unit vector or a normalized vector if

[o] = 1.
e Example:
1
fo=12]=|v]|=v12+22+32=+14 = It is not an unit vector.
3

e Let be v1,v; € E", and A € R". Then it verifies (see |7]):

—_

o] >0 vy £ 0

[\]

ol = (A o]
3. Cauchy-Schwarz inequality: |vy - ve| < [Jvq]|]|vel|
4. Minkowski (or triangle) inequality: ||v; + va| < [Ju1]| + ||v2]]

5. Pythagoras’s theorem: |lvy||? + [[vo]|? = ||v1 + vo|?
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2.2.2.2 Distance

Definition 8 A metric (or distance function) on R" between two vectors vy, vy €
E"™ is defined as follows:

n

d(vi,v2) = [Jog — va]| = | > (v1; — v2,)? (2.6)

=1

The distance function is called Euclidean metric, and it expresses a special case

of the Pythagoras’ Theorem.

e Example:

I vy = (1.3,5) and v, = (3,1,4), then:

d(Ul,Ug) = ”U1 — UQH =3

2.2.2.3 Angles

Definition 9 The angle formed by two vectors vy, ve € E™, (v1,v9) is defined by its
cosine:
— V1 U2

cos(vy,ve) =

STPTT—TE (2.7)
[[oa][[[oz]

where 1, 05 = 0 + 2km, k € 7,0 € [o, 7).

e Example:
If v, = (1,3,5) and vy = (3,1,4) N

. 1,3,5)-(3,1,4 2
(v1,v2) = arccos <||((1’ 3. 5))||H<(3= 3 4>H> = arccos (—) = 0.53118 rad

e Properties:

1. v1 # 0 and vy # 0 are linearly dependent < 7,05 is 0 or 7.

S N —
2. cos(Avy,v9) = ——cos(vy,v3)

RY
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2.2.2.4 Orthogonality

The concept of orthogonality is defined in any space equipped with the inner product
(see [8]):

Definition 10 Two vectors vi,vs € E" are orthogonal if vy - vo = 0. In this case,
1t 1s written vy L vs.

Given a set vectors {vy,vs, ..., v,} € E", it can be checked that:

e v;-v; =0 and i # j = They are an orthogonal system.

o v;-v; =014fi#jandv;-v; =1 ifi =75 = They are an orthonormal system.

e Example:

Every coordinate system is an orthonormal system because each axis is per-

pendicular with each and every other of the rest and its norm is 1.

1}

Figure 2.2: Cartesian coordinate system in the three-dimensional space, where the
axes form an orthonormal system and each vector can be represented as combination
of these basis vectors or axes (see equation (2.1)).
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Definition 11 Given a euclidean vector space with finite dimension E, any
orthogonal basis of E will be called orthogonal basis or orthonormal basis

of E (depending on the case).

e Properties for orthogonal systems:

1. If a system is orthonormal, then is also orthogonal.
2. Given vy, vy # 0 € E", then they create a right angle.

3. The null vector is perpendicular to any vector. It is the only orthogonal
vector to all the vectors in E".

4. Given a orthonormal system vy, vs, ..., v, # 0 then the system

{ (%1 (% n

(%
sl floall ™ flonll

} is orthonormal.

To sum up, although Euclidean space is usually presented as a vector space, many
others structures can also be defined around it. In this work, all the explained math-
ematical tools are intended to facilitate the understanding of kinematics. Therefore,
the relationship between Euclidean space and the Lie group and Lie Algebra will

be studied in the following sections.

2.3 Manifolds

Definition 12 An N-dimensional manifold M is a topological space where every
point p € M s endowed with local Euclidean structure. In other words, in an in-
finitely small neighbourhood of a point p the space looks smooth, so it resembles

FEuclidean space near each point.

A manifold has a well defined tangent space at every point. This fact allows us
to apply the methods of Calculus or Linear Algebra to study them. Although near

each point a manifold resembles Fuclidean space, globally a manifold might not.

The dimension of a manifold is the dimension of its tangent spaces, so a manifold

i R™ cannot have a higher dimension than n.
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e Example: One-dimensional manifolds

A one-dimensional manifold is a curve without self intersections or peaks.
Curves can be closed, unbounded (indicated by arrows) or they can have one

or two endpoints, also called boundary points (see [9]).

2)S59C

Figure 2.3: Example of one-dimensional manifolds. These curves can be evaluated
as lines in local neighbourhoods.

e Example: Two-dimensional manifolds A two-dimensional manifold is a smooth
surface without self interactions. It may has a boundary, which is always a
one-dimensional manifold. In this kind of manifolds, each point in the surface
can be locally analysed by a tangent plane in which the properties of a concrete

algebra are defined.

. f’l
NS M

Figure 2.4: Two-dimensional manifold M embedded in three-dimensional space, a
point p € M, the tangent space at p (T, M) and the algebra m, which defines the
vector operations.
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A very intuitive example of what is not a manifold is the closed square, because
its corners are not smooth. However, there are a lot of surfaces which can be

evaluated locally as planes along their whole structure.

A
v
o

iy
Favay,
GO

o aAPn

Figure 2.5: Example of two-dimensional manifolds in three-dimensional space, like
spheres, paraboloids and torus.

2.3.1 Definitions
2.3.1.1 Charts

Definition 13 A chart is an invertible map between a subset of the manifold and
a simple space such that both the map and its inverse preserve the same structure.
In a topological manifold, the simple space is some FEuclidean space R"™. In the
case of a differentiable manifold, a set of charts is called an atlas, which allows

to calculate 1n manifolds.

Figure 2.6: On the left side, example of an atlas from a sphere, where all the poly-
gons are charts (local planar approximations). On the right, the map of topological
relations between charts.
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2.3.1.2 Atlases

Definition 14 As the description of most manifolds requires more than only a chart,
a collection of them is required which covers the whole manifold. This collection is
an atlas. An atlas is not unique because all the manifolds can be covered in multiple

ways using different combinations of charts.

2.3.1.3 Transition function

Definition 15 Charts in an atlas may overlap, so set of the manifold points may
be represented in several charts. If two charts overlap, then different parts of them

represent the same region.

Given two overlapping charts, ¢, and ¢p, a transition function goes from an
open ball in R™ to the manifold and then back to another (or the same) open ball in
R"™, wsually called T,, 3 = ¢ o bo . These functions, T and T are also called

transition maps.

"ffr_ix\_
/ i )
cfiif ﬁ.. = Us /
{-J.}l:"‘__ ’ "i'_ E o -h-\-""-\-\_\-\-/

Figure 2.7: Example of a transition function between two charts, where M is the
manifold, ¢, and ¢z are the charts and 7, 3 and Tp, are the transition functions for
going from one to another.
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2.3.2 General example

The idea of manifold and all the important concepts can be easily understood looking

at the following pictures:

M= [5 T. f-l\l

topological set \
Atlas = set of charts

Chart: bijective, continuous,
and with continuous inverse

!
I
| ®a charton M
1

LR}.: N

H%}.: -

RS A is a k-manifold

-
N

; _ L o—1
Tag = @30 da sufficiently regular:
Bijective, derivable s times
with inverse derivable s times

Figure 2.8: Definition of a manifold M, where it is possible to see two different
charts (¢, and ¢p), and the transition function T, 3 between them. Some important
concepts are also inside red boxes.

A more general aspect of the charts inside the manifold is bellow:

. - L -1
Ta.:’i = (.D_B o @a

Figure 2.9: Manifold M composed by a set of charts (atlas). Two charts (in pink
and yellow) have been highlighted to exemplify how they must share a common part
(in green) to make the atlas coherent.
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2.4 Concepts about groups

2.4.1 Rigid transformations

Definition 16 A rigid transformation, also called isometry, is a transformation
in which the distance between points is always constant, in other words, a transfor-

mation where the output space is the same as the input one (see [10]).

d(P,Q) = d(T(P),T(Q)) (2.8)

Properties:

e Those transformations are injective (invertible) so the composition of two rigid
transformations is another rigid transformation. Thus, a rigid transformation

does not distort the size or shape of the transformed body.

d(Ty o Ty(P), Ty 0 Th(Q)) = d ((To(T1(P)), T2(T1(Q))) (2.9)

d(Ty(P), Tz(Q)) = d(P, Q) (2.10)

e These equalities are due to the rigidity of T} and T, respectively. The rigid
compositions in the Cartesian space form in this way a group under the com-

position.

As it will be seen next, these transformations are defined by matrices, so the
group is not commutative. The group of rigid transformations is the special Eu-
clidean group, F(n). When the reflections are not included (proper rigid trans-

formations), the group is called special Euclidean group, SE(n).
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2.4.2 Congruences and Symmetry group

Definition 17 Two figures are congruent if ones can be changed into another us-

g a combination of rotations, reflections and translations.

When a figure is congruent with itself in more than one way, these extra con-
gruences are called symmetries. Hence, the symmetric group is the group of

wsometries under which an object is tnvaritant with composition as operation.

A symmetry group whose shape is not distorted can be represented as the sub-

group of orthogonal group O(n).

The proper symmetry group (the subgroup of orientation-preserving isome-
tries) is a subgroup of the special orthogonal group SO(n), and is also called
rotation group of the figure. The difference between O(n) and SO(n) is that SO(n)

does not allow reflections.

e Example:
R 2r orIdentity Reflection
AN— A DA—A
R i—w Reflection
R % Reflection
T >

Figure 2.10: The set of symmetry transformations which defines the symmetry group
of the equilateral triangle: the identity, rotations of order 3, and combinations of
rotations and reflections.
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2.4.3 Lie groups

Definition 18 A Lie group is a smooth manifold M which has at the same time a
group structure consistent with its manifold, so the group operations are compatible
with the smooth structure of the manifold (multiplication, inversion and identity
element). In consequence, this manifold is differentiable (see [11]).

In other words, a Lie group is a group which locally has the topology of R™ around

each one of its elements.

e Example. The Linear General Group (see [12]):

Let GL(n,R) be the group of square matrices n X n which are invertible. This
is a non-commutative Lie group of dimension n?. As GL(n,R) is an open
set in R™ (which contains an open ball around each of its points and finding
a boundary is impossible), then it is also a differentiable manifold, because
the product of matrices is a differentiable application which can be reduced to

elementary operations.

k=1

2.4.3.1 Lie algebras

Definition 19 The Lie algebra m associated to a Lie group is the tangent vector
space to the manifold M at the identity element I. It has the same dimension as
the manifold.

m = Ty (I) (2.12)

m = Ty([I)

Figure 2.11: The Lie algebra m is the tangent space of M at the identity.
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In a formal way, a Lie algebra is an algebra together with a Lie bracket operator
[,]] : m X m — m such as for any elements a, b and ¢ € m it holds the following

properties (see [13]):

[]:mxm—m (2.13)
(a,b) — [a,b] = ab—ba (2.14)

1. Bilinearity.

2. Skew simmetry: |a,a] =0

3. Anti-commutativity: [a,b] = —(b, a]

4. Jacobi’s identity: [a,[b, c| + [b,[c,a]] + [, [a,b]] =0

e Example. In order to make the notation easier, as of now Tso(2) = s0(2) and
Tso(3) = s0(3).
so(2) is the associated Lie Algebra to the Lie group SO(2) and so(3) is the
associated Lie Algebra to the Lie group SO(3). These groups are the set
of rotation matrices in two and three dimensions, respectively. Both will be

studied in the following chapters.

Since lines and circles are one-dimensional manifolds (parametrized with curves),
the Lie algebra of SO(2) has dimension 1. In the case of SO(3), which is a
three-dimensional manifold (with three possible rotations), its Lie algebra de-

fines a three-dimensional vector space.

50(2)

SO(3)

s0(2) so0(3) is a volume

An element in s0(2) or so(3) represents an
infinitesimal rotation from the identity matrix

Figure 2.12: Lie algebras so(2) and so(3) in relation to the groups SO(2) and S0(3).
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2.4.4 The special Euclidean Group in three dimensions, SE(3),

and relevant subgroups

Definition 20 The group SE(n), special Euclidean group, is the group which

includes all the rigid body transformations (isometries without reflections) in R™.

In order to find utility in the physical world, one of the subgroups of SE(n) will
be focused: SE(3). This group comprises of all the possible transformations in R3,
in other words, any possible movement of rotation or translation. The members of
this are the set of 4 x 4 matrices with the following structure (see [14]):

RO) | ¢
(o). 219

where the rotation R(A) € S0(3) and the possible translations t = [t,,t,,t,]7 € R3.
This way of representing transformations will be studied in detail in sections 3.2 and
4.2. Rotations will be define in the next chapter (see 4.1.1).

Figure 2.13: Translation and rotation by rigid body movements.

e Properties:

— SE(3) is a six-dimensional manifold, since it has six degrees of freedom
(this concept will be explained in more detail later on): three for 3D
translations and three for 3D rotations.

— As SE(3) is embedded in the more general GL(4,R), then it also a Lie
group.
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e In addition, since SE(3) is a group, it satisfies that:

— The set is closed under the binary operation of multiplication: if A, B €
SE(3) = AB € SE(3).
— This binary operation is associative: (AB)C = A(BC)

— For every element A € SE(3), there is an identity element given by the
4 x 4 identity matrix, I € SE(3), such that AI = [A = A (rotation of k7

with a null translation).

— For every element A € SE(3), there is an identity inverse, A~! € SE(3),
such that AA=! = A=1A = I. All the matrices are square, so all of them

have inverse.

2.4.4.1 Subgroups

There are many other groups which are interesting in rigid body kinematics, and
they are subgroups of SE(3). A subgroup consists of a collection of the group
elements which themselves form a group with the same binary operation. Of course,
all these groups satisfy the group properties simultaneously in each case (see [15]).

e The group of rotations in three dimensions: SO(3) (chapter 4)

Definition: It is the set of all the proper orthogonal 3 x 3 matrices:
SOB)=R:ReR¥>3 RTR=RR? =1

Interpretation: All the spherical displacements. The set of rotations which
can be generated by a spherical joint.
e The special Euclidean group in two dimensions: SFE(2)

Definition: The set of all 3 x 3 matrices with the structure:

cos —sinb t,
sinfl  costl  t,
0 0 1

, where 0 is the rotation angle and ¢, and ¢, the defined displacements,

Interpretation: All the planar displacements and rotations possible.
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e The group of rotations in two dimensions: SE(2) (chapter 3)

Definition: It is the set of all the proper orthogonal 2 x 2 matrices:

cos)  —sinb
sinf  cosf
Interpretation: All the rotations in the plane. The set of all the displace-

ments which a single revolute joint can do.

e The groups of translations in 3D, 2D and 1D: T'(i) with ¢ = {1,2,3}

Definition: The set of all 3 x 1, 2 x 1 vectors or real numbers with vector

addition (or simply addition in the last case) as binary operation.

Interpretation: All the possible direct displacements conserving orientations
in the the three-dimensional space (n = 3) (section 4.1.1), the Cartesian plane
(n = 2) (section 3.1.1) or parallel to an axis (n = 1). In this last circumstance,

it is the set of displacements which a single prismatic joint can do.

2.5 The exponential map

Definition 21 The exponential map is a function which maps elements from the

Lie algebra to the correspondent Lie group (manifold) (see [16]).

exp:m — M (2.16)

M

For any square matriz M, the exponential map e is well defined and coincides

with the matriz exponentiation, which can be written:

oo
=2
k=0

M2 M3 MA
k _ - JE—
ME =T+ M+ S+t (2.17)

?T‘lp—k
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e Properties [17]:

1. It is a smooth map.

2. It is surjective (it covers the Lie group entirely).

3. Tt is not injective (there are many points to map one).

4. Identity: eM=0=¢0 =171

5. Inverse: e = (eM)!

6. In general, it is non-linear: e +Mz o£ MM and MMz o£ M2
7. Exponential properties: e®M+AM — caMpBM with o, B € R.

8. Derivative: 0e™ = OMeM = eMOM

9. In SO(3), the exponential map coincides with the rotation’s Rodrigues
formula (see 4.1.4.1).

exp :m — M

Figure 2.14: Graphical interpretation of the exponential map.
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e Example. SO(2) (see [18]):

s0(2) is one-dimensional, and it is possible to take as basis:

sinf  cosf

M) = (cos@ —sin@) (2.18)

Near the identity, the tangent vector is calculated taking into account that
0 ~0.In6=0:

dM(Q): —ij'TLO cos0) (0 —1 (2.19)
do sin0  cos0 1 0

A generic element of so(2) is M, with § € R. Then a generic element of
SO(2) is m(0) = €. Considering that M? = —1:

2M> M M
+ + +

m(0) =1+ 0M + (2.20)

2! 3! 4]
1 (—=1)" 1 (—1)m+t
= (1—=60*+... mg . — T
m(f) = ( 29 +...+ @) 0" +..)1+(0 3!+ +(2n+1)!0 +.. )M
(2.21)
Finally:

0 nb
m(f) = cosfl + sinfL = CO? s (2.22)

—sinf cosf
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2.5.1 The logarithm map

Definition 22 Since the exponential map is surjective, at least an inverse exists.

This inverse is the logarithm map, which map the elements from the manifold to

the algebra.

In: M —m (2.23)

e Properties [19]:

L

It is a smooth map.

It is surjective (it covers the Lie algebra entirely).

It is not injective (there are many points to map one).
Identity: in(I) =0= (M =0)

Inverse: In(M~') = —log(M)

In general, it is non-linear: In(M;My) # In(My) + In(M,)
Exponential properties: e = ) f

Derivative: dln(M) = M~*OM

Figure 2.15: Graphical interpretation of the logarithm map.
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The group SO(2): Bi-dimensional

rotations

Definition 23 The special orthogonal group in two dimensions, SO(2), is

defined by the set of uni-modular, real and orthogonal 2 X 2 matrices (see [20]).

It is possible to construct a matrix of the form:

w9 -

where a, b, d and d are real numbers which verify |M| =ad —cb =1

(as mentioned in section 3.1.2, last property).

Assuming M is orthogonal then M~' = M?T. To accomplish that, a must be

equal to d and c to -b, so the new matrix is:

a —b
My = ( ) (3.2)
b a
Given M, the condition for the determinant requires that a® + > = 1, so the

values for a and b are a = cosf (or sinf) and b = sinf (or cosf, respectively).
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When 6 € [—m, +7], then it all the uni-modular, real and orthogonal 2x2 matrices
can be obtained. This can be demonstrate by proving that M~' = M7, in other
words, M - MT =T (see [21]):

M MT — cosl —sinb ' cosl —sinb _ (3.3)
sinfl  cosf sinfl  cosH

cos?0 + sen?0 cosOsinf — cosOsint B 1 0 (3.4)
sinfcost — cosOsinb sin0 + cos*6 ~\o 1 '

So all the possible rotations in the plane are indeed in SO(2).

3.1 Planar rotations and translations

3.1.1 2D translations

Definition 24 Given a position in the plane v = (z,y) € R? in such way that
v = (z,y)", a translation is only a displacement denoted by t = (t.,t,)" which
preserve the distance between points only adding the values t, and t, to the original
coordinates (see [22]).

v =v 4t = <x> + (tx) — (xHx) , (3.5)
Y Ly y+t,

where v; is new vector composed by the original one plus the displacement.

Mathematically,

e The main property of translations is the effect of two or more successive trans-

lations which is given by the sum of the translations implicated.

U2:U1+t2:1)+t1—|—t2 | U3:U2—|—t3:’l}+t1+t2+t3 (36)

NOTE: An example of translations will be given in combination with rotations
at the end of the chapter (see 3.2).
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3.1.2 2D rotations

A rotation around the origin in a Cartesian space is represented by a 2 X 2 matrix

with the following form:

sinf  cosf

RO — (cos@ —3m9> (3.7)

If there is a vector v = (z,y)” with a magnitude r and an angle from the x-axis
¢, the multiplication of this matrix R(6) by the vector will give another vector with
the same magnitude but displaced 6+ ¢ from the x-axis in an anticlockwise rotation.

It is easy to see using the polar form of the vector v:

cost) —sinf rcoso
stnf  cosf rSing

rcosfcosp — rsinflsing\ [ rcos(0 + ¢) (3.8)
rsinfcos¢ + rcostsing B rsin(0 4+ ¢) ) '

where vy is the new vector resulted by the rotation.

Thus, a couple of properties are deduced (see [23]):

e A rotation of 0 radians has no effect because the resulting matrix is the identity

matrix and any multiplication will keep constant the original one:

R(0) = C?SO —s1n0 :R(O): c?sl —sin0 (3.9)
stn0  cos0 sin0  cosl
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e The effect of successive rotations can be written as matrix multiplication:

Vo = R(Ql)vl == R(QQ)R(91>’U | V3 = R(Qg)vg == R(03)R(92)R(91)U (310)

That is true because R(62)R(0;) = R(fs + 61) and it can be checked using

standard trigonometric identities.

The inverse of a rotation matrix can be understood by a rotation in the opposite

direction by the properties of sine and cosine functions, so

R(0)™' = R(—-0) (3.11)

Therefore, the main conclusion derived is

R(O)7'R(0) = R(—0)R(0) = R(—0 + 0) = R(0) = I

Hence, this matrix multiplication has no effect.

The determinant of a rotation matrix is always equal to one.

cost) —sinb

det(R(0)) = = c0s’0 + sin* = 1 (3.12)

sinfl  cosH

This last property sustains that a rotation does not deform the shape of the ro-
tated body by increasing or reducing its size, only spins it around. In addition,
the determinant is positive because there is not reflection in the transformation

neither. These two features coincide with the postulates in section 2.4.1.
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e Example. 2D rotation matrices

At this point, an example will be shown using the software MATLAB in order

to exemplify what has been described before. The aim of this example is to

rotate a vector v = (1,0)7 twice. First by an angle of 27/3 and after that by

an angle of m counterclockwise.

>>
>>

>>

v2

>>

>>

v3

vi=[1 0]’;
Rot_matrix=[cos(2*pi/3) -sin(2*pi/3); sin(2*pi/3) cos(2*pi/3)];

v2=Rot_matrixx*vil

-0.5000
0.8660

Rot_matrix=[cos(pi) -sin(pi); sin(pi) cos(pi)];

v3=Rot_matrix*v2

0.5000
-0.8660

Figure 3.1: Plots of an arrow before and after the specified rotations (27/3 and 7).
It has been inscribed inside a circle to visualize how the modulus is not altered. The
code details of this plot on MATLAB are contained in the Appendix C.1.
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3.1.2.1 Rotation by complex numbers

A rotation in the Cartesian space can be also implemented by complex numbers. It

must be remembered that the position in the plane can be specified with a complex

number, where the axis x and y reference the real axis and the imaginary one. A

complex number has two main ways of being expressed (see [24]):

e Cartesian form:

C =a+ib, (3.13)

where a and b ¢ R and 7, C' € C.

The module of a complex number is the square root of its squared elements. By

dividing a complex number by its module, one obtains the normalized complex.

Polar form (or Euler form): It indicates the modulus and argument (angle) of

the position vector in the plane:
C =re, (3.14)
where r is the modulus (calculated as indicated before) and 6 is the argument

(which can be calculated as tan™ = =).
a

If the complex is normalized, the modulus is equal to 1 and the factor r disap-

pears.

The rotation of a vector in the plane is the result of a multiplication between two

or more exponentials. If the vector has unitary norm:

el . ol — pileth) — ,i(0+9) (3.15)
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Example. 2D rotation by complex numbers using MATLAB

In a similar way to the previous example, the same vector will be rotated first

2
by and angle of ?ﬁ and later w. To do that with complex numbers, the first

step consists in expressing the vector in Euler form:
The vector v = (1,0)” can be written in the complex plane as v = 0 + i:

>> v1=1+0%1;

>> abs(vl)

ans =

>> angle(vl)

ans =

Then, v = (1,0)T = 1¢°°. Rotating this vector:

>> v1=1xexp(ix0);

>> v2=vil*exp(i*2*pi/3)

v2 =
-0.5000 + 0.86601

>> v3=v2*exp (i*pi)

v3 =
0.5000 - 0.86601
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These complex numbers in Cartesian form are equivalent to the vectors
v2 = (—0.5,0.8660)7 and v3 = (0.5,0.8660)7, which are coincident with the
results in the previous example and with the figure 3.2. Anyway, the final

rotation can be also calculated with a single operation:

>> vi=1*xexp(i*0);
>> v3=vi*exp (i*2xpi/3)*exp(i*pi)

v3 =
0.5000 - 0.86601

To sum up, the way in which vectors change its argument inside the unitary

circumference as the following figure illustrates:

I:_:l-l: v} — I:_:l-”f:l-llll.l

i

R
1 e

Figure 3.2: Effect of the rotation in the plane by complex numbers.
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3.2 Method for defining planar movements

The way of specifying transformations on the plane is by 3 x 3 matrices which store
this information. The two first columns are relative to a rotation angle and the last
one to a translation on the plane. Since matrices must be square, the third row is
independent and formed by zeros in relation with the rotation columns and a one
in the last position (the relative to translation) to keep the property of not to be
distorted. Hence, the matrix which denotes a transformation on the plane has the

following aspect (see [25]):

T=|sinf costd t,|=

cosd@ —sinf t,
( 0 1

E() t) (3.16)
0 0 1

It is important to clarify that these two kinds of transformation cannot take place
simultaneously, because the result is different. Anyway, there is no robotic joint able

to implement these two movements at the same time.

Developing different transformations in cascade, it is possible to see how:

(RO | 6\ (R@) | &) (RO:2+0) | ROt +1) (3.17)

Vo Lo J)o0 o [ 1)

This fact can be shown making the corresponding operations:

costy —sinby to, cosfy —sinby ti,
sinfy  cosly to, | = | sinfy  cosb; ty, | = (3.18)
0 0 1 0 0 1

cos(Oy +601) —sin(f2 + 601) ti1,c0502 — t1,5inby + to,
sin(fy +61)  cos(f2+61)  tiysinby + ty,cosbs + to, (3.19)
0 0 1



66

Chapter 3. The group SO(2): Bi-dimensional rotations

e Example. 2D transformations by using homogeneous transformation
matrices in MATLAB

The following example consists in the implementation of a rotation followed by
a translation on the plane. The initial vector is v = (1,0)” and will be rotated
by an angle of —7/3. After that, and using a matrix with same structure, the
resulting vector will be displaced in 2 units in the x-axis and -1 in the y-axis.
In order to be able to apply the product of matrices, the initial vector will be

also completed with a 1 in an additional row.

>> v=[1,0,1]"
V =

0

1

>> T_mat=[cos(-pi/3) -sin(-pi/3) 0; sin(-pi/3) cos(-pi/3) 0; 0 0 1];
>> v2=T_matx*v

v2 =
0.5000
-0.8660
1.0000

>> T_mat=[102; 01 -1; 00 11;

>> v3=T_matx*v2

v3 =
2.5000
-1.8660
1.0000
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The previous transformations can also be observed graphically in the figure
below (3.3). As always, the details of the script to code this plot on MATLAB
are contained in the Appendix C.2.:

08 08k

06 06+

04+ 04t

0.2f 02k

y-axis
=3
Y
y-axis
o

02t -02F

04} D4t

06} 06

08} 08+

x-axis

y-axis

X-axis

Figure 3.3: Plots of an arrow which represents the position on the vector intending
to specify the different transformations, the rotation by —7/3 and the displacement
by t, = 2 and ¢, = —1. Now the circle can be used as reference to see how after the
rotation vy = (—0.866,0.5) the vector has left the unit circumference to sum what
indicated in each axis.






Chapter 4

The group SO(3): Three-dimensional

rotations

Definition 25 In an analogue way to SO(2), the special orthogonal group in
three dimensions, SO(38), is defined by the set of uni-modular, real and orthogonal
3 x 3 matrices. In contrast with this last one, the rotation group SO(3) is non-
Abelian because the multiplication of rotations in three-dimensional space becomes

non-commutative.

The matrices which represent a rotation in each spatial axis are these ones:

1 0 0
R(W,z)= [0 cos¥U —sin¥ (4.1)
0 sin¥ cosV¥
cos® 0 sin®
RO,y = o 1 o0 (4.2)
—stn® 0 cosO
cos® —sind® 0
R(®,z) = | sin® cos® 0 (4.3)
0 0 1

where the three matrices represent, in this order, a rotation of W along the x-axis, a

rotation of © along the y-axis and a rotation of ® along the z-axis.
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Trivially it can be tested that these matrices are uni-modular (its determinant

is equal to 1). In addition, all these matrices are orthogonal.
RV, 2)R(W,2)" =1 R(O,y)RO,y) =1 R(®,2)R(®,2)" =1 (4.4)

Hence, all the possible spatial rotations are also (like in the case of the possible
rotations in SO(2)) indeed in SO(3). The lengths of position vectors are preserved

and do not contain reflections.

4.1 Spatial rotations and traslations

4.1.1 3D translations

Definition 26 A translation in space is completely analogue to a translation in
plane. Consequently, if there is a position in space v given by three elements (z,vy, z)

T a translation can be defined as a displacement denoted

and expressed asv = (x,y, 2)
by t = (ty,ty,t.)" which preserve the distance between points only adding the values

ty, ty and t, to the original coordinates (see [26]).

T i, o
v=vtt=y|+|t,| =|y+t, (4.5)
z t, z+1t,

e In 3D, the property of translations which sustains that the effect of two or
more successive translations is defined by the sum of the translations involved

is still working (see section 3.1.1).

U2:U1+t2:1}+t1+t2 ‘ U3:U2+t3:’0+t1+t2+t3 (46)

where vy, v and v, are different vectors obtained from the displacement along a
distance t as indicated in each axis.

NOTE: An example of translations will be given in combination with rotations at
the end of the chapter (see 4.2).
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4.1.2 Rotation by Euler angles

Definition 27 Fuler angles are probably the best common way of representing
rotations in three-dimensional space. This method is based on the fact that any ro-

tation may be described using three angles, as the Euler’s rotation theorem sustains

(see [27]).

There are several configurations depending on the axes about which the rotations
are carried out, bul the most used one is the x-convention(also called 3-1-3 or
z-x-z). This convention consists in a starting rotation by an angle ® around the
z-azis followed by © around the z-axis (with © € [0,7]) and finally a third one by ¥

around the z-azis again (see [28]).

X

Figure 4.1: Single representation of the corresponding angles around the cited axes
and its effect in each case.

These rotations are represented by the following matrices:

cosV —sin¥ 0

R(V,2) = | sin¥U cos¥ 0 (4.7)
0 0 1
1 0 0
RO©,2) =0 cos® —sin® (4.8)

0 —sin® cos®

cos® —sin® 0
R(®,2) = | sin® cos® 0 (4.9)
0 0 1
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The effect of the three-dimensional rotation around the body will be given by the

successive multiplication of the three partial rotations, with the following result:

R(®,0,¥) = R(V,z) - R(O,z) - R(®, 2) (4.10)

cosVcos® — cosOsin®sin¥ cosVsin® 4 cosOcos®PcosV  sinVsin®

R(®,0,V) = | —sinWcos® — cosOsin®cosV —sinV¥sin® + cosOcosPcos¥  cos¥sin®
sinBsin® —sin©cosP cos®
(4.11)

Figure 4.2: Graphical representation of the successive partial rotations on the final
result.
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Example. 3D rotation by Euler angles

Using MATLARB, an initial vector will be rotated along three times following

the x-convention. This initial vector will be defined as v = (1,0,0) and the

rotations angles as ¥ =7, © = 27/3 and ¢ = —7/2:

>>

v

>>
>>
v2

>>
>>
v3

>>
>>
v4

v=[1,0,0]"

Rot_psi=[cos(pi) -sin(pi) 0; sin(pi) cos(pi) 0; 0 0 1];
v2=Rot_psi*v

-1.0000
0.0000
0

Rot_theta=[cos(2*pi/3) 0 sin(2%pi/3);0 1 0;-sin(2*pi/3) 0 cos(2*pi/3)]1;
v3=Rot_thetax*v2

0.5000
0.0000
0.8660

Rot_phi=[cos(-pi/2) -sin(-pi/2) 0; sin(-pi/2) cos(-pi/2) 0; 0 0 1];
v4=Rot_phi*v3

0.0000
-0.5000
0.8660



74 Chapter 4. The group SO(3): Three-dimensional rotations

The successive effects in the previous vector are exemplified in figure 4.3, so it
is possible to see how any orientation in three-dimensional space can be reached

by using the rotations defined before.

.
0.5
0.5
2 0
T
~N w
2
0.5 N
05
1)
_:1|>
0 1
1 0.5
0.5
_ 1 ) 05 O 0 o 0
y-axis w-avis . =1 “ .
y-axis X-axis
c
1.
05
05
Z 0
o w
"~ 'ﬁ 0.
M
05
05.]
Ei
1> -1
1 1
1 05
0 05 0 !
05 ¢ 05
, 1 i
-axis ! : : -1 :
¥ X-axis Y-ax1s X-axi1s

Figure 4.3: Plots of an arrow before and after the specified rotations. It has been
inscribed inside two perpendicular circumferences to visualize how the modulus is
not altered. The details of the script to code this plot on MATLAB are contained
in Appendix C.3.
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4.1.3 The problem of gimbal lock

Definition 28 Gimbal lock, or rotation singularity, is a phenomenon consisting
of the alignment of two of the three azes of rotation (gimbals) causing the loss of
one degree of freedom (or more) and impeding the system to rotate along the affected
directions (see [29]). Any system that uses Euler angles will face this problem because

the three azxes are independently evaluated.

Figure 4.4: On the left, all the gimbals are totally free to rotate on their respective
axes. On the right, the three axis are parallel and the locking out of the axis which
depends on the rest (in this case the blue axis) is produced. The blue gimbal cannot
rotate along the orange one.

Looking at the previous system of Euler angles, duplication is avoid by the restric-
tion of 0 < © < 27. In contrast, it is impossible to avoid duplication when © = 0,
which returns a matrix whenever ® + U has a constant value. Mathematically the

second matrix (the identity matrix) has no effect on the product:

cosVcos® — sinVUsin® —cosWsin® — sinWeosd 0
R(®,0,¥) = | sinWcos® + cos¥sin® —sinWsin® + cosPcos® 0 (4.12)
0 0 1

Applying trigonometric formulas:

cos(W+ @) —sin(¥+P) 0
R(®,0,¥) = [ sin(¥ + ®) cos(¥+®) 0 (4.13)
0 0 1
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Changing the values of ¥ and ® in the above matrix has the same effects: the
rotation angle ¥ + & changes, but the rotation axis remains in the Z direction: the
last column and the last row in the matrix will not change. Only one degree of free-
dom (corresponding to U + ®) remains. The only solution for U and ® to recover
different roles is to change © to some value other than 0. A similar problem appears

when © = 7.

It can also be understood considering that the matrix has adopted the 2D rotation
shape, where (U + ®) is a constant (for example «) and the rotation is only on the
Cartesian plane (section (3.1.2)). Then, a spatial rotation has become impossible
(see [30]).

cosae —sina 0
R(®,0,V) = | sinaw  cosa 0 (4.14)
0 0 1

This is a planar rotation inside a three-dimensional space.

Gimbal lock can be avoid using a fourth gimbal, for example by using quaternions
(see 4.1.5).

4.1.4 Rotation by Euler axis/angle

Definition 29 The axis/angle representation also derives from FEuler’s rotation
theorem, and holds that a rotation in three-dimensional space can be parametrized by
only a unit vector ¥ and an angle 60, which describes the magnitude of the rotation

about this axis.
Hence, the whole rotation can be expressed as:

r=0r, (4.15)

where 7 is the unit vector which indicates the resulting direction which will be ro-

tated. Then, this rotational axis has three spatial components: 7 = [r,,r,,7.]7.
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X

Figure 4.5: Schematic representation of a rotation by Euler axis/angle method.

4.1.4.1 Euclidean vectors rotation by Rodrigues formula

In a similar way to section 4.1.4, Euler-Rodrigues Formula is also based in one of the
Euler’s theorems for rotations. In this case, it is based on the fact that the general
displacement of a rigid body with one point fixed is a rotation about some axis that
passes through that fixed point. In order to understand it better, we could imagine
there is an original vector and later it is decomposed in two: one parallel to the
rotation axis and the remainder orthogonal to it (see [33] [34]). Once this is done, it

will be possible to rotate the orthogonal vector in its plane using a 2D rotation.

The following figure tries to exemplify it:

r

Figure 4.6: Decomposition of the red vector in two: one parallel to the rotation axis
7 (yellow) and the remainder in green. R is the rotation operation.
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Now, some equalities will be defined [35]:

e The vector h is the part of & in the direction of 7, so:

h=(&-F)-7 (4.16)

e The vector 5 is defined to be the part of & which is perpendicular to 7, so:

S=(f—h)=Z—(&-F)-7 (4.17)

e If a new vector ¢ is defined to be perpendicular to both # and §, as shown in

the next figure, one can assume that:

T+
Il
=y
ny
Il
>
—~~
81
|
ol
SN—
I
>
8y

(4.18)

Figure 4.7: Representation of the new defined vector t. The cross represent the
vector 7 with outside direction.

e Since 7 x h = 0 because h is parallel to r, is possible to deduce that strictly in

the plane of rotation (figure 4.7) the transformed location of § is given by:

R -5 = cosl5 + sinft = cosO[i — (Z — (Z - 7)7] + sin(0)[F x ] (4.19)
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e One can deduced from the figure 4.6 that the rotated vector R-Z can be broken

into two parts as the vector sum of h and R - s:

R-Z=h+R-§= (T -7)F + (cos|Z — 7(7 - T)] + sinf[r x T| (4.20)

e This last expression can be written as follows, resulting in the Euler-Rodrigues

formula:

R(7,0,%) = Zcosh + (7 x &)sinf + 7(7 - Z)(1 — cosh) (4.21)

4.1.5 Rotation by quaternions

Definition 30 Quaternions, represented by Q, are part of a kind of numbers called
hypercomplex numbers. Compared to Fuler angles they are easier to compose and
avoid the problem of gimbal lock. Compared to rotation matrices they are more nu-
merically stable and may be more efficient. Quaternions have found their way into
applications in computer graphics, computer vision, robotics, navigation, molecular

dynamics, flight dynamics, and orbital mechanics of satellites.

Analogously to the complex numbers, they can be defined by composition of a real

part and an imaginary one (but in this case the imaginary part is three-dimensional):

Q=a-+ib+ jc+ kd, (4.22)

where a,b,c,d € R, 4, j, k are square roots of —1 and Q € R%.
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All the possible products and equivalences between the different imaginary units

are collected below:

1] = —ji =
Jjk=—-kj=1
ki=—ik=3j

A different way of thinking about these products is on the Cayley graph, which

is resumed on the Cayley table, as can be seen next:

1 i j k-1 —-i—-j -k
1 « j k-1 —-i-j—k
il =1 k—=j =i 1 -k j
g k=1 i—-j k1 —i
k| kb j =i =1 =k =j i 1
=1 =i -~k 1 ik
—i|=i 1 =k j i-1 k-=j
—jl=i Kk 1 = j -k -1
—k|—k —j i 1 k j —i -l

Figure 4.8: Cayley graph a Cayley table for quaternions. The blue line is a multi-
plication by i and the red one by j in the the indicated direction.

In addition to the representation before, quaternions can also be expressed in

other ways:

e Complex matrix representation:

at+ib c+id
—c+1id a—1b

(4.28)
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One can deduce two conclusions:

— As one can observe, for complex numbers this matrix becomes diagonal.

— The norm of the quaternion is the square root of the determinant of this
matrix (vVa? + b2 + 2 + d?).

e Compacted representation (see [31]):

Q = g0, 4", (4.29)

where the imaginary part is grouped in q. It is possible to see an analogy

between quaternions and real numbers (Q = [qo, 0]) and with the vectors in R?

(Q - [07 Q])

This last notation will be used as of now. In any case a = ¢y, b = ¢1, ¢ = ¢ and

dZQ4.

The main properties of quaternions are:

e The conjugated quaternion @ is:
Q" = qo —iq1 — jq2 — kg3 (4.30)
e The sum of two quaternions (0; and ()5 is:

Q1+ Q2 = (qo1 + qo2) +i(qu11 + q12) + J(go1 + q22) + k(g31 + ¢32) (4.31)

e The product of two quaternions ()1 and (), is:

4.32
4.33
4.34
4.35

Q1 Q2 = (qo1go2 — Q11q12 — G21G22 — 31432)
+i(qo1q12 + q11q02 + G21G32 — 31G22)

)

)

~~ N /N~
— e’ e N

(
+7(q01922 — G11G32 + ¢21G02 + ¢31¢12
+k(qo1q32 + q11G22 — G21G12 + 931402
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e The norm of a quaternion () is:

1Ql=VQ @ = V@ Q=@ +&+8+3 (1.36)

In relation to rotations, quaternions can be written in terms of angle and axis in

the following way:

—c am

q = sin (g) n (4.38)

where n = | j | and 0 = | O(y)
k (k)

NOTE: In this case the angle ¥ represents a rotation along the x-axis, instead of
the z-axis as in the last convention for Euler angles. It is convenient to remember the
convention used before in the section (4.7) is completely subjective and any other

could be used in a similar way.

Hence, the unit quaternion (with a norm equal to 1) can be generalized as:

Q) = cos <%> + isin (%) + jsin (%) + ksin (%) (4.39)

And its conjugated as:

Q; = cos (5) —i-sin (%) —j-sin (%) — k- sin (%) (4.40)

The rotation quaternion for a specified axis is obtained by imposing a spin of 0
rad in those axis which are not involved and replacing 8 by the corresponding angle

in relation with the selected axis.
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On the other hand, when mixing several axes it is necessary to use the norms of

multiplication already studied:

ve =Q,-v-Qr, (4.41)

where v is the initial vector, vy the rotated one, (), a quaternion vector with four

elements and () its conjugated.

Moreover, the same result can be obtained by the matrix conversion of the unit

quaternion and the subsequent multiplication:

vy = R - v, (4.42)

where R% is the conversion of the unit quaternion into matrix as it is written in the

following equation:

B+ —G -0 20142 — 2q0gs 2¢193 + 29042
RY = 20003 + 20102 @ -4+ B — @ —200q1 + 2¢23 (4.43)

—2q002 + 2q1g3 2901 + 2205 @@ — ¢ — G5 + 45

This process must be follow several times for using this method to rotate again,

after a previous conversion from the pertinent representation to quaternions.

e Example. 3D rotation by using quaternions

At this point, all the operations needed to operate using quaternions will be
developed in order to rotate the same vector used in the previous example for
Euler angles (see 4.1.2) (v = (1,0,0)) and also by the same angles of rotation
(U =7, ©® =271/3 and & = —7/2). Each step will be explained in detail to

make the understanding easier:
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First, the initial vector must be written as quaternion. This process is done by
replacing each one of the axes by the corresponding imaginary unit (the x-axis

by i, the y-axis by j and z-axis by k). The real part is always 0.

v=1(1,0,0) — Q=0+ 1i+0j + 0k =i (4.44)

After that, the quaternion which represents the rotation is:

Q. = cos <g) + (n1i + nej + nsk) sin (g) (4.45)

where ny,ng, ng are used to the define the rotation axis (which can be a com-
bination of three spatial ones) and 6 is the rotation angle.

In this case, the rotation will be only around the z-axis, so:

Qr:cos<g>+(0i+0j+1k)sin<g> —0+0i+0j+k=Fk  (4.46)

Hence, the result vector, expressed as quaternion, is:

vy = Q,-v-QF = (k)(i)(—k) = ki(—k) = —ik(—k) = =1 — vy = (—1,0,0)
(4.47)

2
The following rotation will be developed by an angle of g around the y-axis:

2 2
Q, = cos (g) + (0 + 1j + Ok) sin (%) = 0.5 + 0.866; (4.48)

U3 = Q,v2-Q* = (0.540.8665)(—1)(0.5—0.866;) = (—0.5i+0.866k)(0.5—0.8667)
(4.49)

v3 = 0.5i 4 0.866§ — v3 = (—0.5,0,0.866) (4.50)
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Finally, the last step is another rotation by —m/2 around the z-axis (according

to the x-convention):

Q) = cos (Tﬂ) + (00 + 05 + 1K) sin (_TW) =0.7071 +0.7071k  (4.51)

vs = Q,-v3-QF = (0.707140.7071k)(0.5i+0.866k) (0.7071—0.7071k) = (4.52)

vs = (0.3535 + 0.621k + 0.335] — 0.621)(0.7071 — 0.7071k) (4.53)

vs = 0.5j + 0.866k —> v = (0, —0.5,0.866) (4.54)

As can be checked, these results perfectly match with the ones obtained
by using Euler angles (see 4.1.2), so these rotations can be identified with
the figure 4.3.

NOTE: All the operations shown above have been made manually, so they do
not appear in any Appendix. The rules for getting results have also been

explained at the beginning of this chapter.
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4.2 Method for defining spatial movements

The process for defining a general motion in a three-dimensional space is very similar
to the used in planar motion. The rotation matrices include translations in their last

column, so the fundamentals already seen are also valid here (section 3.2):

R(O) | ¢
( ; 1) (4.55)

e One must remember that the main advantage of this representation is that it

makes the successive transformations in cascade easier:

R(6y+0:) | R(b2)t+1)

( Vo (
Vo [0 o | 1)

(4.56)

The only difference with 2D is the size and composition of these matrices, which
must be adapted for the kind of rotation depending on the axis where they are carried

out in each case:

1 0 0 ty
0 U —sin¥ t
T(W,z)= | 7 T (4.57)
0 sm¥ cos¥ t,
0 0 0 1
cos® 0 sin® t,
0 1 0 t
T(©,y) = Y 4.58
(6,9) —sin® 0 cosO t, ( )
0 0 0 1
cos® —sin® 0 t,
nd d 0t
T(®,z) =" v (4.59)
0 0 0 t,
0 0 0 1
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The way of working and the properties of this method are completely equivalent
to what was told in 3.2. The only difference between 2D and 3D is that the product
of matrices is not commutative. Therefore, when developing several transformations

in a consecutive way this aspect must be considered carefully.

¢ 3D transformations by using homogeneous transformations matrices
in MATLAB

In order to exemplify what has been told, some transformations will be devel-
oped on a predefined vector v = (1,0,0)7. First, a translation of t, = —1,
ty = 3 and ¢, = 2 will be implemented. At that point, the resulting vector will
be rotated by —pi/4 around the x-axis and by 37/5 around the z-axis. As in
the case of 2D transformations, rotations and translations must be carried into
effect separately and the initial vector must be completed with 1 in the final

row.

>> v=[1 00 1]°

= O O =

> T_mat=[1 00 -1; 01 03; 0012; 000 11;
>> v2=T_matx*v

v2 =

= N W O
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At this point, the resulting vector is vy = (0,3,2)7. The rotation motions are

applied in the following way (the matrix shape depends on the axis):

>> T_mat=[1 0 0 0; O cos(-pi/4) -sin(-pi/4) O0;
0 sin(-pi/4) cos(-pi/4) 0; 0 0 0 1];

>> v3=T_matx*v2

v3 =
0
3.5355
-0.7071
1.0000

>> T_mat=[cos(3*pi/5) -sin(3*pi/5) 0 0; sin(3*pi/5) cos(3*pi/5) 0 0;
0010; 000 1];

>> v4=T_mat*v3

vd =
-3.3625
-1.0925
-0.7071
1.0000

Hence, the results are:

— Initial vector: v = (1,0,0)T
— After a translation (t, = —1,t,=3,t, = 2): vy = (0,3,2)"
— After a rotation by —7/4 around the x-axis: v = (0,3.5355, —.7071)7

— After arotation by 37 /5 around the z-axis: v, = (—3.3625, —1.0925, —0.7071)
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The graphical representation of the motions above can be observed in the following
figure 4.9. The script with the detail to code the plot are included in Appendix
CA4.
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1
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0
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s xeais
Figure 4.9: Plots of an arrow which have been moved according to the specified
transformations: a translation (¢, = —1, t, = 3, t, = 2) and two consecutive rota-
tions (—|pi/4 around the x-axis and 37/5 around the z-axis). The two perpendicular
circumferences can be used to visualize how the norm 1-limits are overpassed after
a translation.






Chapter 5
Forward Kinematics

Definition 31 Kinematics is the study of the possible movement and configura-
tions of a system. Thus, it is really concerned with its geometry. The task of un-
derstanding how a system can move in given circumstances requires knowledge about
forces and inertias. In order to explain it, the forward kinematics tries to describe

the position and orientation of the last link of a kinematic chain in terms of joint
variables q(t) = (q1(t), q2(1), ..., qu(1)).

This chapter will treat the concordance of all the previous transformation ma-
trices (using Matrix algebra) with the physical constitution of a robot. Forward
Kinematics is, at the end, only intended to match matrices and movements about

each joint of the kinematic chain.

5.1 Structure and components of the kinematic chain

From the mechanical point of view, a robot is a kinematic chain formed by links and
joints, which are designed to allow a relative movement between two consecutive
links. The free end of the chain is called end effector. Industrial robots base their

anatomy in a similar structure to an human arm (see [36]).
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5.1.1 Links

Definition 32 A link is an (assumed) rigid body that possesses at least two nodes
that are points for attachment to other links (see [37]). It can be (5.1):

e Binary link: One with two nodes.
e Ternary link: One with three nodes.

e Quaternary link: One with four nodes.

Nodes

Binary link Ternary link Quaternary link

Figure 5.1: Most used kind of links.

5.1.2 Joints

Definition 33 According to the definition of joint in [38], “A joint is a connection
between two or more links (at their nodes), which allows some movement, or potential
movement, between the connected links”. Joints (also called kinematic pairs) can

be classified in several ways:
e By the type of contact between the elements: line, point or surface.
e By the number of degrees of freedom (DOF) allowed at the joint.
e By the type of the joint physical closure: either force or form closed.

e By the number of links joined (joint order).

Definition 34 A degree of freedom, also called DOF, is the maximum number

of possible directions a joint can move.
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There are several kinds of joints, but the most used ones are prismatic joints
and revolute joints (figure 5.2). These joints only allow movement in one direction,
so they only have one degree of freedom.

=P Q B0 <
18 [ A

Revobue (R jomnt—1 DOF Prismaix (F} jomt—1 [WF Helical (H} joint—1 [MIF

Figure 5.2: Most known one DOF joints.

Structures with more than one degree of freedom are usually considered complex
joints (figure 5.3).

h
A o
[ - -1
Ax - .i'P L .fI._'.' ‘i._'-:
A T = s

™ — -

. =

AB
Cylindeic (O joini—7 INIE Spherical {5 jome—3 [KWF Marar (F} joini—3 [N

Figure 5.3: Most known joints with more than one DOF.

At this point, it is vital to know that moving a specific joint will change the
following joint position because the displacement of a joint affects all the joints
after it. Therefore, an easy method to represent the conversions and effects on the

kinematic chain (given by 4 x 4 transformation matrices) is required to be as clear
as possible.
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5.2 Forward kinematics resolution by homogeneous

transformation matrices

The forward kinematics problem has been previously reduced to find a transforma-
tion matrix (T) which connects the position and orientation of the end of the robot

considering the fixed reference system placed in its base.

The homogeneous transformation matrix which represents the relative position
and orientation between the associated systems to two consecutive joints is called
=1 A; matrix. In this way, A1 describes the position and orientation of the reference
system corresponding to the first joint, !4, describes the position and orientation
of the second one in relation to the first, etc. Similarly, naming °A,; the resulting
matrices from the product of matrices "' A4, from ¢ = 1 to ¢ = k, the robot kinematic

chain can be represented in a partial or total way (see [39]).

For example, the position and orientation of the third joint with respect to the

base coordinated reference system is:

0143 :O Al 2A2 0143 (51)

When all the DOF are considered, the °A,, matrix is then called T matrix. Hence,
given a robot with n DOF, the position and orientation of the last joint will be

expressed by the T matrix in this way:

T="A,="A, "4, 24, ... "4, (5.2)

In order to describe the relationship between two consecutive elements, the most
used procedure in robotics is the Denavit-Hartenberg (D-H) representation,

whose vitality has been preserved despite of being proposed in 1955.
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5.3 Denavit-Hartenberg representation

Denavit-Hartenberg representation (D-H) is a systematic procedure in order to des-
cribe the kinematic structure of an articulated chain (open kinematic chain) com-
posed by one DOF joints (see [40]).

Before applying the D-H method it is important to consider the following aspects
(see [41]):

e [t is possible to start with any configuration of the robot, but placing the robot

in an easy initial position is recommended.

e The orthogonal coordinated system in the base (X, Yy, Zp) is placed in the
Zp-axis, located along the first joint axis of movement and pointing at out of

the arm of the robot shoulder.

e The reference system of each link is placed at the end of the link where the

following one is joined.

e The angle or displacement of each link is always measured by taking as base

the previous link reference system:.

e When establishing the coordinated reference system in the robotic hand, the
Pieper’s Principle must be considered: the three last reference systems must
be intercepted in a point in order to obtain a closed solution for these links in

the Inverse Kinematics problem.

5.3.1 Denavit-Hartenberg parameters

According to this representation, by choosing correctly the coordinate systems as-
signed to each link, it is possible to go from one link to the following by four basic

transformations which depend only on the geometrical features of the link.

This basic transformation consists of a sequence of rotations and translations

which allows to relate the element i reference system with the i — 1 reference system.
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The required transformations named above are the following ones (see [42]):

Rotation around the z; ;-axis an angle 6;

Translation around the z;_;-axis a distance d;; vector d; = (0,0, d;).

Translation around the x;-axis a distance a;; vector a; = (a;,0,0).

Rotation around the z;-axis an angle «;.

Since the product of matrices is not commutative (see 2.4.1), these transforma-

tions must be implemented in a particular order, so:

LA =T(2,0,)T(0,0,d;)T(a;,0,0)T(z, o) (5.3)

Calculating:

cosh; —sinf; 0 O 1 0 0 O 1 0 0 a 1 0 0 0
i1y _ sinf; cosf; 0 O 010 O 01 0 O 0 cosay —sina; O
’ 0 0 1 0 0 01 d; 0 0 1 0 —sina; cosay; O
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
(5.4)
Finally it can be expressed as:
cosfy —cosa;sinl;  sinagsin®d;  a;cost
i1y _ sinf;  cosaycosl;  —sinacosh;  a;sinb; (5.5)
1 T . .
0 —sinq; cosqy; d; ’
0 0 0 1

where 0;, a;, dy, a1 are the the D-H parameters for the joint i.

Therefore, only by identifying these parameters is it possible to obtain the A-

matrices relating all the robot links.
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5.3.2 Denavit-Hartenberg algorithm for obtaining the forward

kinematics model:

The kinematic model can be easily applied by following these steps (see [43]):

e D-H 1. Links must be enumerated starting with 1 for the first one and ending

with n. The base of the robot will be enumerated as 0.

e D-H 2. In the same way, joints must be enumerated starting with 1 and

ending with n.

e D-H 3. The axis of each joint must be located. If the joint is rotative, the
axis will be its own rotation axis. If it is prismatic, it will be the axis along

the displacement is carried out.

e D-H 4. For i from 0 to n — 1, choose z;-axis along the axis of joint i + 1 (fig.
5.4, first picture).

e D-H 5. Place the origin of the base system Og in any point along zp-axis.
The axes xy and yy will be placed in order to form a dextrorotation (clockwise-

moved) system with 2.

e D-H 6. For i from 1 to n — 1, place system O; (corresponding to the link
i) in the intersection of z;-axis with the common normal line to z;_;. If both
axes are crossing then O; would be placed in the crossing point. If they were

parallel, O; would be placed in joint i + 1 (fig. 5.4, second picture).

e D-H 7. Choose x; in the common normal line to axes z;_; and z; (fig. 5.4,

third picture).

e D-H 8. Choose y; in order to form a dextrorotation system with z; and z;,

completing the right-handed frame fourth.
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Figure 5.4: Graphical example to explain how to place axes in Denavit-Hartenberg
representation (see [44]).

At this point (see [45]):

0;: Tt is the angle between the axes x;_; and x; measured in a perpendic-
ular plane to the z;_j-axis, using the right-handed rule. It is a variable

parameter in rotative joints.

— d;: Tt is the distance along the z;_j-axis from the (i — 1) — th coordinate
system origin to the intersection between the axes z;_; and z;. It is a

variable parameter in prismatic joints.

— a;: It is the distance along the x;-axis from the intersection of the z;_;-axis
with the x; to the ¢ — th coordinate system origin, in the case of rotative
joint. For prismatic joints, it is the shortest distance between the axes

zi—1 and z;.

— «;: It is the angle between the axes z;_; and z;, measured in a perpendic-

ular plane to the x; axis, using the right-handed rule.
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D-H 9. Place system O,, at the end of the robot in a way to make z,, concordant

with the direction of z,_; and zy to be normal to z,_; and z,.

D-H 10. Obtain 6#; as the angle necessary in the rotation of z;_; to do xz;

and x; parallel.

D-H 11. Obtain d; as the distance, measured along the axis z; 1, that it is

needed to move the new O;_; for aligning x; and x;_; each other.

D-H 12. Obtain q; as the distance measured along the z;-axis (now coincident
with x;_;) that the new O;_; must be displaced to be totally concordant with

O; in origin.

D-H 13. Obtain «; as the angle that it must be revolved around x; (concordant

with x;_1) to make the new O;_; totally concordant with O;.

D-H 14. Obtain the transformation matrices =1 A; previously defined in 5.3.1.

D-H 15. Obtain the transformation matrix which relates the base system to
the end of the robot (T =2 A; 1A, ... "71A,).

D-H 16. The matrix 7" defines the orientation (submatrix of rotation) and
position (submatrix of translation) from the referred extreme to the base de-

pending on the n joint coordinates.
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5.3.2.1 Some examples for better understanding: Three-link planar ma-

nipulator (see [46])

Figure 5.5: Three-link planar manipulator schematic.

Link | a; o; | d; 0;
1 aq 010 0,
2 as 0 0,
3 as 0 03

Table 5.1: Three-link planar manipulator D-H parameters.

The corresponding A-matrices to this example are:

'LflAz(el) —

cosb;
sinb;
0
0

fori=1,23.

—sinb;

cosb;

0 a;cosb;
0 a;sinb;
1 0
0 1

(5.6)
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Then:

T :0 Ag :0 Al 1A2 2143 (57)

cos(01 + 0y + 03) —sin(0y + 02 +03) 0 ajcosh; + azcos(01 + 02) + azcos(01 + 02 + 03)
sin(fy + 02 +03) cos(01 +02+03) 0 aysinfd; + agsin(0; + 02) + agsin(0y + 02 + 03)
0 0 1 0

0 0 0 1
(5.8)

5.3.2.2 Some examples for better understanding: Anthropomorphic arm

Figure 5.6: Anthropomorphic arm schematic.

Link | a; o; | d; 0;
1 0 /2| 0 0,
2 a9 0 0 0,
3 as 0 |0 05

Table 5.2: Anthropomorphic arm D-H parameters.
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In this case, the corresponding A-matrices are:

cost; sinbd, 0 0
nd; 0 —cosb 0)
04y (0,) = | 7 ! 5.9
1(61) 0 . 0 0 (5.9)
0 0 0 1
cosb; —sinb; 0 a;cosb;
i_lAi(Qi) _ sinb; cosh; 0 a;sinb; (5.10)
0 0 1 0
0 0 0 1
for1=2,3.
Then:
T :0 3 :0 A1 1A2 2143 = (511)

cosbicos(02 + 03) —cosbisin(f2 +63) sinf;  cosbi(azcoshz) + azcos(Bz + 63))
sinficos(02 + 03) —sinbisin(f2 + 03) —cosb;  sinbi(azcos(b2) + ascos(b2 + 63))
sin(fy + 03) cos(0z + 03) 0 agsinby + agsin(fs + 63)
0 0 0 1
(5.12)



Chapter 6
Inverse Kinematics

The chapter before has studied how the position of the end effector (at the end of
the robotic chain) can be perfectly placed by using Forward Kinematics and specify-
ing the displacements and angles to move. Now, the desired position and orientation
of the end effector will be given by the user, and the rotation angles of the required
joints will have to be calculated. This problem can have none, one or more solutions
depending on its complexity. Therefore, if there are so many configuration limita-
tions and the system has no solution, then the system is overconstrained; if there
are relatively few restrictions and a lot of solutions can be found to solve the initial

problem, then the system is called underconstrained.

Definition 35 The reachable workspace is the volume of space which can be
reached by the end effector (see figure 6.2).

Definition 36 The dexterous workspace is the volume of space which can be
reached by the end effector with all the different orientations (see [47]).

Forward Ki nemati@ End-Effector
Position

Inverse Kinematics | (x,y,2)

Joint Variable

(9r)

Figure 6.1: Forward Kinematics vs Inverse Kinematics.
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Cartesian Cylindrical Spherical

Skara Anthropomeorphical

Figure 6.2: Reachable workspace depending on different configurations.

The mechanical complexity is important for determining the different kinds of
solution which can be implemented in order to solve the problem, from analytical
(very easy systems) to differential ones (with much more difficult configurations), as

it will be explained next.

6.1 Important points when solving Inverse Kinemat-
ics

Definition 37 It is possible to define the inverse kinematics solution as the
set of variables which allow to locate the end effector in a concrete position and
orientation. Unfortunately, there are no general algorithms for solving this dilemma

systematically.
Some problems must be taken into account (see [48]):
e A set of equations must be solved.

— These equations are non-linear (sin, cos) in rotation matrices.
— More than one solution can be found (singularities).

— In addition, the possibility of finding no solution to the problem also

exists.
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e When the solutions are multiple:
— The solution with a lower number of possible movements is the one which
must be chosen.
— At the same time, the nearest solution must also be considered.
— The lighter links must have priority to move.

Obstacles must also be taken into account in order to avoid collisions.

Another important aspect is the proportion between the number of degrees of
freedom (DOF) in the system and the numbers of DOF required by the particular
task.

If (see figure 6.3):

e System degrees of freedom — Required degrees of freedom to perform
the task = Two (2) solutions

e System degrees of freedom > Required degrees of freedom to perform

the task = Infinite (co) solutions

System DOF = Task DOF System DOF > Task DOF

Figure 6.3: Graph to exemplify the dependence between system and task degrees of
freedom.

Depending on the kinematics problem complexity, the three main kind of solu-
tions which are usually used are: using geometric resolution, using homogeneous
transformation matrices analysis or using iterative methods. In the last case, the

solution by Jacobians will be the one studied here.
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6.2 Analytical methods

6.2.1 Solution by geometric methods

Most of the simplest robots have relatively simple kinematic chains. This feature
makes the inverse kinematics problem resolution easier. Only considering the first
three degrees of freedom in a robot, the elements are placed in the same plane. More-
over, in the case of many robots the last three degrees of freedom are mainly used in
the end effector orientation. In these cases is possible to find a systematic method to
approach and solve the problem, making the demand of computer resources smaller
(see [48]).

The geometric procedure is based in finding an enough number of geometric
relations between the end effector coordinates, the coordinates of its joints and the

physical dimensions of its elements to solve the problem.

6.2.1.1 Example of a three-DOF-robot geometric resolution

In order to make the way of solving this kind of problem clearer, the resolution to
the robot in the figure (see 6.4) will be explained (see [49]):

Figure 6.4: Robot to solve: Three-DOF-arm robot.
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The features of this robot are shown below:

e Three DOF robot.
e Coordinates P, P,, P..

e Planar structure robot.

The coordinates are referred to the point where the end effector must be posi-
tioned. Since the robot has a planar structure, it is defined by the the first joint

variable angle, which can be easily obtained in the following way:

P,
¢ = arctan (Fy) (6.1)

Considering the elements 2 and 3 (in the same plane) and using the Law of

cosines:

r? = (P, +(P)* = 1+ (P)*=(1)*+ (I3)* +2(L)(I3)cosqs =  (6.2)

(Pa)? + ()" + (P2)* — (12)* — (I5)°
2(12)(1s)

This expression allows to obtain ¢; depending on the position vector at P. In

(6.3)

cosq3 =

order to save computational efforts, the function arctan will be calculated:

1— 2
sengz = £4/1 — cos?q3s = q3 = arctan (iﬂ> (6.4)
C0Sq3
P:c 2 P 2 Pz 2 T 2 T 2
COS%:( )*+ (By)° + (P.)” — (12)” — (I3) (6.5)

2(12)(I3)



108 Chapter 6. Inverse Kinematics

The two solutions for g3 are due to the two different configurations which the

robot can deal with (see figure 6.5):

Codo Abajo Codo Arriba

Figure 6.5: Possible two choices for the same purpose.

At this point, ¢ is calculated from the difference between 8 and a:
P, P,
=f— = = t =) = t _— 6.6
@=0-a B arcan<r> arcan(ZF P§+Py?) (6.6)
Finally:
P, l
ga = arctan | ————| — arctan _‘a%ends (6.7)
T\ P7+ P} Iy + l3c0sqs

These two possible values depend again on the possible possibilities to choose, as

specified in (see 6.1), when the number of solutions was detailed.

6.2.2 Solution by algebraic methods

A priori, it is possible to determine the inverse kinematics model of a robot when
knowing the forward kinematics parameters. In other words, the task of obtaining
the inverse relations taking as starting-point the known expressions for position and

orientation can be developed (see [50]).
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However, this method is not always easy and is sometimes so complex that it must
be rejected. Besides, as the forward kinematics problem solved by transformation
matrices has twelve equations (in the case of a six-DOF robot), six final relations
are expected, but some dependencies between the twelve initial expressions will be
possible to find. The decision of this equations must be made carefully, because
sometimes transcendental equations appear, and these ones are not possible to solve
by using purely algebraic procedures. In order to avoid that, instead of isolating
directly T other combinations are searched. This is an heuristic method, not a

systematic one.

The goal of this procedure is to deduce the values of the articular variables
ar(t) = q1(t), q2(t)...qx(t) depending on the vectors n, s, a and p, which define the

end effector location (position and orientation) as part of the transformation

matrix T.
Ny Sy Ay Py (6.8)
0O 0 0 1

where:

e 71: Normal vector at the end effector. If the hand is like a clamp, this vector is

orthogonal to the fingers.

e 5 Sliding vector at the end effector. It is pointing to the direction of the fingers

movement when these are moving.

e a: Approaching vector at the end effector. It is pointing to the normal direction
to the back of the hand.

e p' Position vector at the end effector. It is pointing from the coordinate system

origin in the base to the coordinate system origin in the hand.
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6.2.2.1 Example of a Three-DOF-spherical-arm robot algebraic resolu-

tion

A proper example which can be solved in a relatively easy way by using this method

is detailed next. The robot which is aspired to be solved is shown in figure 6.6:

Figure 6.6: Robot to solve: Three-DOF-spherical-arm robot.

The table with the Denavit-Hartenberg parameters is shown below:

Link | a; Q; d; 0;
1 0 /2 | L 01
2 0 —m/2 | 0 0
3 0 0 ds 0

Table 6.1: D-H parameters to solve the given robot.

Thanks to these parameters previously defined, it will be possible to find equiva-

lences in the following way (see |51]):

T = OAl 1A2 2A3 = (OAl)il T - 1A2 2A3 = (1142)71 (OAl)il T - 2A3 (69)
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Where:
cost)y 0 sinfd; O costls 0 sinfy 0
04, — sinf; 0 —cosf; 0 14, — sinfy 0 —cosfy 0 (6.10)
0 1 0 I 0 -1 0 0
0 0 0 1 0 0 0 1
1 00 O cosBicosly —sinb, —cosbisinbfy, 0
24, — 010 0 04, — sinélcoseg co(f; —sinfisinfy 0 (6.11)
0 0 1 ds sinby 0 c0s0, I
00 0 1 0 0 0 1
cosBicosly —sinby, —cosbisinby —dscoslisinby
T 04, — sinélcosﬁg cost;  —sinbisinfy —dzsinb;sinbs (6.12)
sinby 0 cosly c3c080y + 1
0 0 0 1
Performing as described before:
(PAN)TI T =" Ay 24y (6.13)
cosfy sinfy 0 O Ng Sz Gg P
0 0 1 =) ny sy ay py| _ (6.14)
sinfy —cosfy O 0 N, S, Ay P,
0 0 0 1 0O 0 0 1
costly 0 —sinfy O 1 0 0 O costly 0 —sinfy —sinbads
sinfy 0 costly  0) 0 1 0 0) | sinfy 0 cosbs cosbads
0 -4 0 ofJoo1ds| | o -1 o0 0
0 0 0 1 0 0 0 1 0 0 0 1
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Choosing element (3,4):

sinby py — cosby p, =0 = tanb, = Py = 0, = arctan <&> (6.16)
Pz Pz
In addition:
("1A9)7" (AT T = 244 (6.17)
costly  sinfy 0 O cos;  sinb 0 0 Ng Sz Gz Pz 1 00
0 0 -1 0 0 0 -1 -k Ny Sy Gy Py 010
—sinfy costly 0 0 sinfy —cosfy O 0 N, S, Gy Ps 0 0 1 ds
0 0 0 1 0 0 0 1 0O 0 0 1 0 00 1
(6.18)
Calculating:
cosfycost cosblasinfy  sinfly  —li1sinbs Ng Sz Gz Pz 1 0 0 O
—sinb cosbq 1 0 ny sy ay py| [0 1 0 0
—sinbacosdy —sinbasinf; cosly —licoslsy N, S, Gy P 0 0 1 ds
0 0 0 1 0O 0 0 1 0 00 1
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Choosing element (1,4):

cosbtycosthp, + cosbysinbdip, + sinbap, — lisinfy =0 = (6.20)
o = arctan <_00861px i sinﬁlpy) (6.21)
p.— b
Choosing element (3,4):
— sinbacosthp, — sinbysinbip, + cosbaop, — cosbaly =ds = (6.22)
ds = cos(by)(p. — 1) — sin(62)(cosbyp, + sinbip,) (6.23)

The same result can reached by using geometric procedures.
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6.3 Iterative methods

Most of the movement chains are too complex to allow an analytic solution. In these
cases, the inverse kinematics problem can be solved by using a sequence of steps
leading to incrementally find a better solution for the joint angles. The aim is to

minimize the difference between the current and desired positions of the end effector.

The most known method is the inverse Jacobian matrix.

6.3.1 Solution by the Jacobian inversion method

Definition 38 The Jacobian is the multidimensional extension to the differenti-
ation of a single variable. As there is a relation between the Cartesian space of
the end effector and the joint space of the joint angles, the Jacobian transforms
the differential angle changes to the differential movements of the end effector. It
shows how each coordinate changes with respect to each joint angle in the system.
As a result, the Jacobian is extremely useful, since it describes the first order linear

behaviour of a system.

X = J(0)6, (6.24)

where the vector X represents the expected change in the end effector. It is com-
posed by the linear velocities (%, y, 2) and rotational velocities (6, 6,, 0,). The
desired change is based on the difference between the current position/orientation
and what is specified in the goal configuration. 0 represents the vector of angular
velocities, which are the equation unknown variables. J is the matrix which relates

the two matrices before and it depends on the current position (see [47]).
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Hence, the equation (6.24) can be built in the following way, in relation to the
system degrees of freedom (DOF). Normally the number of DOF is six (from 6; to

0g): three for rotations and three for translations.

96, 96, a0,

o gy 0 0

[x7ya2791a6)2793] - a_eyl 8_52 o % - [017027937947 T 70”1] (625)
00, 00, 00,

The Jacobian can be obtained column by column from the transformation ma-

trices A;.

Since the variable is 9, the Jacobian inversion is needed. Therefore, the equation

before (6.24) is transformed to the form:

0=J10)X (6.26)

6.3.1.1 Iterative model

The Jacobian inversion method works in two phases. Partial transformations on the
joint angles are computed first. After that, the end effector position and the Jaco-

bian are computed. Then the end effector locations is changed.

The second part contains Jacobian matrix inversion and joint angles changes.
The next step consists of the repetition of the first step and of the change of the
end effector position. The obtained differential position of the end effector position
(dX) is inserted in phase two. These steps are repeated until the error (difference
between the current and the desired location) comes below a defined value € or the

maximal number of iterations are reached (see [52]):

|J(df) —dX|| <e VvV iterations > mazximal (6.27)
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The algorithm for developing the Jacobian inversion method is summarized

in the following figure (6.7):

Cartesian do=J"dx Join
velocities velocities

dX de

dX=Jde

Figure 6.7: Iterative model for the Jacobian inversion method.

Within this kind of solutions, the Jacobian inversion method can be imple-
mented in many ways: Jacobian Pseudo-inverse, Jacobian Transpose, Sin-
gular Value Decomposition, Damped Least Squares or the Feedback In-
verse Kinematics method. The big complexity of these methods and the huge
computational efforts that they demand make another family of methods, based in
numerical solutions, strongly appear. The possible algorithm to find these numerical

solutions will be detailed in the following chapter.



Chapter 7

Numerical methods and their
applications to solve the Inverse

Kinematics Problem

The task of finding the angles which are needed to move the robot joints to the
desired position is a very complex mathematical problem (as it has been specified
before) and all the possible methods are intended to reach the best value possible in
order to get the minimum difference between the desired position (the coordinates
where theoretically the end effector must go) and the obtained position (the coor-
dinates where it is in the real world). The Inverse Kinematics problem is destined

to minimize this difference (before called € as much as possible).

As it has studied in previous chapters, not always the solution for the Inverse
Kinematics problem can be reached by an analytic way, specially when the robot
configuration is extremely difficult to solve. At this point, iterative methods are
used in order to find a solution for non-linear system, but many iterations are

required to delimit the error.

Consequently, the number of calculations (it is very important to remember the
huge computational necessity for the Jacobian inversion) and the reliability of the

final results make the method choice a vital aspect.

117
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7.1 Taylor’s Theorem

Definition 39 Taylor’s Theorem gives an approximation of a defined and k-
times differentiable function (with so many variables as wanted) around a neigh-
bourhood of the point a (a — €,a + €) by a k-th order Taylor polynomial. The
higher is the polynomual order, the better is the approximation at the evaluated point
and the higher the number of points inside the neighbourhood which satisfy such ap-
proximation (see [55]).

7.1.1 Taylor’s theorem in one variable

Given a function f € C*, and a € dom(f), the Taylor k-order series expansion in

one variable at the point a is defined as the following power series:

f'(a) f"(a) M (a)

Piaf(z) = fla) + - (r—a) + (@ —a)’ + -+~ (@ —a)t  (T.1)
In general, it can also be written as follows:
— M(a)
Puf(@) = > 2w —a)t, (72)
k=0

where Py ,(z) is a polynomial with an approximated value to the function f(x) at
the point a, f¥)(a) are the successive derivatives of the function which is being ap-
proximated at the point a and k is the polynomial order.

This polynomial satisfies with f(x) ~ Py .(z) if @ € (a — €,a + ¢€), so the polynomial
value in the neighbourhood of the point a is approximately the value of the function
f(x) at that point. Moreover, it is trivial to see how the polynomial derivatives in
the point a until the order k are coincident with the function f(z) derivatives at that

point.

In other words, one can deduce that (see [54]):

. f(x) = Pia()
1m ——-—-—

—0 (7.3)
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This result indicates not only the difference between f(z) and Py ,(z) is lower
when x approaches to a, it also means this difference is lower even comparing it with
(r — a)*. Definitely, it is possible to say that Taylor polynomials are a very good

way to approximate a function in a point.

T th
Abweichungen P1(x)
\ bei ri2:
\  PT57%
| P3 7.5% 1l ——
| P5:045% Y
\ PT0016%
Y PO 0,00035% P9(x)

sinx

P7(x)

Figure 7.1: Different approaches to the function sin(z) (in dark blue) by several
Taylor polynomials (k=1 in red, k=3 in orange, k=5 in green, k=7 in light blue and
k=9 in violet).

As it is possible to see, as higher is the order higher is the neighbourhood which
satisfy the approximation. In the chart it can be observed the different deviations

) T
when the functions are measured in 5

The difference between the obtained value by the polynomial use and real value

of the function at the desired point is called remainder term (Ry(x)):

Ry(x) = [f(2) = Pral2)] (7.4)

The remainder mean-value form can be expressed as follows:

Re(z) = {ki(f))' (z — a)*+, (7.5)

where ¢ € (v —a,x + a).
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7.1.2 Taylor’s Theorem for multivariable functions

Analogously to the series expansion for functions with one variable, the Taylor’s
Theorem for function with several variables describes the approximation to a mul-
tivariable function at a given point (defined in so many coordinates as wanted) by
using a multivariable polynomial. In this case the neighbourhood of the point is not
an interval in R, it is a ball with so many dimensions as variables in the space (in

R™ for n variables).

Given f € C*, and a := (a1, ,ax), a € dim(f), the expression which allows

the calculation is presented below (see [55]):

_ —~ 0f(a) Ly~ Pf(a)
Praf(x) = f(a) + ; Go. (@i )+ 2 uom, (w; — a;)(xj — aj) + -+ (T.6)
L5 0" f(a)
"+Hil . BZZ _ 04,0, 0y, -+, O, (@i, =i, ) (Tiy =iy ) (Tiy —asy) -+, (T3, —as,),

(7.7)

where a and z are sets with so many variables as dimensions in the space, Py ,(z) is a

multivariable polynomial with an approximated value to the multivariable function

) 0% f(a

f(z) at the point a, 8f( )
:;C.

respect each one of the variables which are composing the set of variables x at the

are the successive partial derivatives of the function with
multivariable point a and k is the polynomial order.

As in the case for one variable, is defined the remainder term by the equality:

Rya(z) = f(2) = Pra() (7.8)

The equation (7.9) is also satisfied, so the similarity between the function and its

Taylor polynomial is better the nearer is a and the higher is the order.

R
lim —ka(x)
va ||l — all*

—0 (7.9)
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These remainder term can be calculated now in this way:

1 n ak—i—lf(c)
— A
Rk,a(x) (k + 1)' - Z axil T axikJrl ('TZ - ai) T ('TikJrl - a’ik+1)’ (7 O)

01,0 k41

where ¢ is a multivariable point and ¢ € (z — a,x + a).

The figure 7.2 shows a graph with two multivariable approximations to a given

function at an specific point, in this case in two dimensions:

Figure 7.2: First order Taylor polynomial approximation for the sinusoidal function
f (left) and second order Taylor polynomial approximation for the same function
(right). One can observe that the first degree polynomial in 2D is a plane (in 1D is
a line) and the second degree polynomial is corresponded with a curved plane inside
a three-dimensional space.
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7.2 Optimization methods to solve equations

The great number of variables in the Inverse Kinematics problem and the complexity
which their resolution requires make impossible to use an analytic method. Hence,
the values must be estimated in order to satisfy as much as possible all the equations

at the same time, what is a very difficult task.

Optimization methods are iterative procedures in which the solutions are approx-
imated incrementally having as basis the previous values, so the consequence is that
the higher the number of iterations is, the better is the obtained approximation. Of
course, there are several possibilities to do it. The most used ones will be seen in

this section.

7.2.1 Gradient descent

Definition 40 Gradient descent, also known as steepest descent, is a optimiza-
tion method based in the iterative application of the first-order multivariable Taylor

approzimation in order to reach a desired local minimum.

Given a differentiable and defined scalar field (it can be a multivariable function)
f(z) in a neighbourhood of a point a (which can be a multidimensional point), gra-

dient decreases fastest if one goes from a in the direction of the negative gradient of

F(a) (=VF(a)).

This method is evidently necessary when solving asymmetric functions, because
for symmetric ones all the possible directions are the same. It is possible to find an
example about this aspect in figure 7.3 (left), where the direction to move does not
matter because there are infinite number of curves to get the goal. In contrast, when
functions are complex (which is unfortunately an inherent circumstance in Inverse
Kinematics) the direction to move must be chosen rationally. In the figure 7.3 (right)
it is possible to distinguish two possibilities by using the descent gradient method
because depending on the initial position the method is only able to reach a local

minimum, but not always the global one is guaranteed.
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Imitial Condition

- Initial Condition 2

Initial Condition 1

\

&

- i ~ Global Minimum
=5+ Local Minimum

Figure 7.3: Graph example to show the different aspects to consider when using
descent gradient depending on the function shape and the chosen initial point.

It is not hard to see why this method is one of the most popular ones: it is
very simple, easy to use, and repetitions are fast. But the biggest advantage of this
method is it is the guaranty to find a local minimum even when a lot of

iterations are needed (see [56]).

Figure 7.4: Zig-zag movement when reaching the steepest direction by using decent
gradient.
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Nevertheless, the problem with this procedure is it is relatively slow in closing
to the minimum: technically, its rate of convergence is inferior to many other
methods. The reason is the method implies a right angle (g) turn at the conclusion
of each search line, so when the steepest descent is reached moving diagonally it has
to zig-zag back and forth across the proper direction (see figure 7.4), what is very

inefficient because the progress is slow.

7.2.1.1 Descent gradient algorithm

The algorithm which this method follows is shown below (see [57]). It is initialized
with a guess (z), a maximum iteration count (N,..), a gradient norm tolerance (¢,)
that is used to determine whether the algorithm has arrived at a critical point, and

a step of tolerance (€,) to determine whether significant progress is being made.
1. fori = 1, 2, R 7Nmax Tiy1 < T; — ozZVf(xl)
2. I |V f(ziy1)|| < €, then return "Converged on critical point"
3. If [|x; — zi41|| < €, then return "Converged on a z value"

4. If f(xi41)|| > f(x) then return "Diverging"

5. Return "Maximum number of iterations reached"

The variable «; is known as the step size, and should be chosen to maintain
a balance between convergence speed and avoiding divergence. As it can seen, this

value depends on each one of the iterations i.
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7.2.2 Newton-Raphson Method

Definition 41 The Newton-Raphson Method, also known as only Newton’s Method,
18 a procedure for finding successively better approximations to the roots of a real-

valued function.

Given f(z) as a continuous function and continuously differentiable, it is possible
to reach its roots by approrimations using tangents to the function and having as the

following approximation the point where the tangent line crosses with the z-axis.

7.2.2.1 Newton-Raphson method to solve one-variable functions

Let xy a good guess of a root r and let » = 2y + h. Since the true root is r, and
h = r — g, then h measures how far the guess x is from the true value of the root
(see [58]).

Since h is very small, it will be used the tangent line approximation to conclude
that:

f(r) = 0= f(zo + h) = f(zo) + hf'(z0) (7.11)

This expression can also be obtained from the Taylor expansion in xy + h (see
equation (7.12)):

Fao+h) = f(zo) + F(mo)h + %f”(xo)fﬂ o (7.12)

where h = (z — (29 + h)) and it has been shown all the terms until the second-order

expansion.

Hence, only keeping the first-order terms and considering that (z¢+h) approaches
to r, it can be deduced that f(zo+h) = f(r) = 0 and the same expression as before
(7.11).



Chapter 7. Numerical methods and their applications to solve the Inverse
126 Kinematics Problem

Therefore, unless f'(z) is close to 0:

—~ f(xo)
b~ _f’(xo) (7.13)
Thus:
r=xo+h=~x)— }f’((xm(z))) (7.14)
So the first estimation is:
Ty = Ty — f(x() (715)
f'(o)

The following ¢ iterations are implemented in exactly the same way as x; has

been obtained from z:

_ f ()
() (7.16)

A graphical example is presented in figure 7.5:

Tit1 = T

\o
\
-

Figure 7.5: Newton-Raphson method for a one-variable funtion, where r is the root
and z; the successive approximations by using tangents.
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7.2.2.2 Newton-Raphson method to solve and minimize multivariable

functions

The previous procedure can also be applied to solve systems of m equations with n

variables. In this case the expression (7.11) can be written as follows (see [59]):

gm(r) = g(xi) + Jg(zi)h, (7.17)
gl(ZEh To ... l’n)

g1z, 29 xn) | . .
where g,,(z;) = . is a system of n variables and m equations,

Im (21, 22+ - T4)

dg1 O g1
0x1 Oxo ox,,
gz 0ga 0ga
Jy(x) = Oy Oy 9z, | is the Jacobian matrix of partial derivatives of the

g g ~ Ogm
0xr; Oxy ox,,

component functions of g(z), and h is again the distance from the initial guess to

the root which is been searched (h = (r — xg)).

In the same way as before, the final expression of the Newton-Raphson method

for several variables is:

Tiv1 = x; — [Jg(x:)] " g(;) (7.18)

In practice, z;41 is not calculated by computing [J,(z;)]”" and the multiplying by
g(x;), because the calculations which are needed for the Jacobian inversion make it
computationally inefficient. Instead of that, it is more practical to solve the following

system of linear equations:

Jo(@i) sn = —g(@s), (7.19)

where the unknown s; is solved by using a method such a Gaussian elimination, and

then setting x; 11 = x; + s;.
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In the Inverse Kinematics problem the function f(z) (with m > n) must be
minimized and the system of equations V f(z) = 0 solved. Then, g(x) = Vf(x), and
Jij(x) = H f(x). Therefore, the Newton-Raphson method adopts the form bellow:

Tig1 =3 — [Hy(2:)] 'V f (), (7.20)

where H,(z;) is the Hessian matrix, the square matrix with the second-order partial

derivatives and V f(z;) is the gradient.

o If H, f(x;) is positive definite, then its critical point is also guaranteed to be

the unique strict global minimizer of f(x).

When used for minimization, the Newton-Raphson method approximates f(x;)

by its quadratic approximation near x;.

Now, computationally the system to solve is:

Hy(xi)pi = V f(2:), (7.21)

where p; = [H;(z;)] 7'V f(z;) is the vector which solves the system and determines

the search direction.

The main advantage of this method is the high efficiency it has when the
initial guess xq is close to r. Besides, it also converges faster than gradient descent,
avoiding the zig-zag movement at the final steps (see figure 7.6). In contrast, this
convergence is not completely guaranteed, and if the initial point is far from the
root then the method may not converge. Due to that, this initial guess must be

chosen carefully.
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Descent Gradient i Newton-Raphson

02, 02"
04
DE

08

Figure 7.6: Comparison between the methods of Gradient descent and Newton-
Raphson. Convergence is much faster in this last one (and because of that the
efficiency is higher), but it is not assured if the initial guess is not close to the root.

7.2.3 Gauss-Newton Method

Definition 42 The Gauss-Newton Algorithm is a method used to solve non-
linear least squares problems. It can be seen as a modification of the Newton-
Raphson method for finding a minimum in a function without using second-order

derwatives, what Newton-Raphson method cannot do.

Given m functions gm(x) = (g1(2), g2(x),...,gm(x)) of n wvariables x =
(x1,22,...,2,) with m > n, the Gauss-Newton algorithm iteratively finds the mini-

mum of the sum of squares:

S(g) = % >_ g’ (7.22)
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7.2.3.1 Deduction from the Newton-Raphson method

The Gauss-Newton Method is developed from Newton-Raphson by approximation
and it is deduced having as starting point the equation (7.20). Taking into account
that S(g) = >_1", gi(x)?, the gradient vector of S is given by:

9gi(z)
Zgz 8% , (7.23)

wheret =1,2,...,mand j=1,2,...,n
The Hessian is calculated by differentiating the gradient elements with respect to xy

by the chain rule:

=2 (55 g ) (28

At the same time, it is known that the Jacobian is:

Jo(x) = agf) (7.25)

The Newton-Gauss method is obtained by ignoring the second-order derivative

terms. Knowing the Jacobian, the Hessian is given by:

Hlo) = 3 (G2} a0 (7.26)

1=1

As Vgi(x) = J,(x)Tgi(x), the equation (7.20) is the Gauss-Newton formula:

T = s — [Hy()]'Vgi(e) = 2, — [, @) @) @) o) (7.27)

In practice, because of the computational inefficiency described in 7.2.2.2, the

inverse matrix is never calculated. Instead of that, it is used:

Tivi = i + Diy (7.28)

where p; is the vector which determines the search direction.
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The update of p; is computed by solving the linear system (7.29):

Jg<x)TJg($)pi = _Jg(x)Tgi(x)v (7.29)

where g;(x) is a set of m functions of n variables.

Some aspects must also be mentioned (see [60]):

e Assuming that J,(z) has full rank (the maximum rank possible according to
its rows and its columns), the Hessian approximation H,(z) = J,(x)"J,(z) is
positive definite and the Gauss-Newton search direction is a descent direc-

tion.

e Otherwise, J,(z)"J,(x) is non invertible and the equation (7.29) has no an
unique solution. In this case, the problem is under-determined or over-

parametrized.

As one can observe, the main advantage of this method is it does not need to
solve second-order derivatives like in Newton-Raphson case. However it also has
disadvantages: unlike Newton-Raphson, the only application of this method is to
minimize a sum of squared function values, and not even local convergence is guar-
anteed. Besides, the Gauss-Newton method may fail if the initial estimation is very

far from the minimum.

Figure 7.7: Example of the optimization process for one-variable functions by using
the Gauss-Newton method.



Chapter 7. Numerical methods and their applications to solve the Inverse
132 Kinematics Problem

7.2.4 Levenberg-Marquardt

Definition 43 The Levenberg-Marquardt Algorithm (LMA), also known as
damped least-squares (DLS) is the most used optimization algorithm to solve non-

linear least squares problems (see (7.22)).

The Levenberg-Marquardt Method interpolates between the Gauss-Newton Method
(see 7.2.3) and the Gradient descent Method (see 7.2.1). When the current esti-
mation is far from a local minimum, it behaves like the Gradient descent, and when
the minimum s close, it behaves like Gauss-Newton, so it converges faster. Fur-
thermore, it s more robust than the Gauss-Newton method, which means that in
many cases it can find a solution even when the starting quess is far from the final

7.2.4.1 Levemberg-Marquardt’s aim

The Levenberg-Marquardt Method tries to combine the advantages of convergence
of the previous methods. Hence, Levenberg-Marquardt steps are linear combination

of gradient descent and Gauss-Newton, so it comprises of adaptative rules (see [61]).

Gradient descent dominates the algorithm until a valley is reached (in order to
avoid zig-zag (see figure 7.4)) and as of that moment Gauss-Newton steps are used

because of the good behaviour of this method in that situation.

7.2.4.2 Levenberg-Marquardt’s formula

Considering that the initial idea was intended to modify the Newton-Gauss equation

to combine it with the gradient descent one, Levenberg proposed this algorithm:

T =2 — (Hy(x;) + M) 7'V (), (7.30)

where H,(z;) is the Hessian matrix evaluated at z; around the set of functions
gm(x). A is a positive value named damping parameter and it is used to control

the influence of gradient descent or Newton-Raphson in the behaviour of the method.
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Using the Hessian approximation described in (7.26), the expression above (7.30)

can also be written as:

Tip1 = i — ([Jg(2:) " Tg(2:)] + M) 7 Vgm() (7.31)

The value for X is initially pre-fixed, normally A = 1073, If the obtained value
Ax = z;11 — x; by solving the equations conducts to a reduction in the error,
then the increment is accepted and A is divided (usually by 10) in the following
iteration. On the other hand, if the value of Az conducts to increment the error,
then A is multiplied (usually by 10) and the equations are solved again. This process
stills until getting a value Ax to decrement the error. The problem of this method

is when the value of )\ is very large, the calculated Hessian matrix is not used at all.

Magquardt solved this problem by replacing the identity matrix I in the equation
before (see (7.31)) for a diagonal of the resulting Hessian, so the final Levenberg-

Marquardt method formula is (see [62]):

ziv1 = x5 — (Jy(2:)" Ty (2) + Miag(Hy (7)) ' Vgm(z) = (7.32)

T = 1 — (Jyls) Ty a:) + Adiag(J, ()" T, (2:))) ™V gy ) (7.33)
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After this improvement, for large values of A the Levenberg-Marquardt Algorithm
almost behaves like the gradient descent method (with a short step in order to fit
low curvatures). This is a good strategy when the current solution is far from the
minimum. On the contrary, if A is a small value (to fit high curvatures), then the
Levenberg-Marquardt step is almost identical to the Gauss-Newton step. This is the
desired behaviour for the final steps of the algorithm since, near the minimum, the

convergence of the Gauss-Newton method can be almost quadratic [63].

The Levenberg-Marquardt Method always converges in a local minimum, but
the best solution is not completely guaranteed. In other words, the global minimum
may be reached or not depending on the initial considered point, like in the gradient
descent method (figure 7.3 (right)).
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Figure 7.8: The Levenber-Marquardt method applied to a bi-dimensional error func-
tion.



Chapter 8

Manifolds 1n order to avoid

non-Euclidean spaces

The most of the methods which have been seen in previous chapters work properly
in vector spaces (isomorphic to R™). Nevertheless, in the case of rotations, this is not
always possible and variables to be estimated may not define an euclidean vector

space.

In the group of rotations SO(3), for example, two optimal approaches can be

implemented: by using three parameters or over-parametrizing the system.

When using a representation with three variables (Euler Angles or another kind
of representation composed of the one-by-one spatial axis rotation), the problem of
gimbal lock (see 4.1.3) might appear because there exist no parametrization
of SO(3) with three parameters and no singularities. When the variable to be
estimated approaches such a singularity the inverse of the parametrization becomes
discontinuous. Therefore some algorithms’s choice to avoid this problem is to change

the parametrization if the variables gets close to a singularity.

As it has already been seen, another option is to over-parametrize the system, for
example by using quaternions in SO(3) (using four values to parametrize) (see 4.1.5).

After that, the parametrization must be re-normalized if needed. Nevertheless, es-

1585



136 Chapter 8. Manifolds in order to avoid non-Fuclidean spaces

timation algorithms are not aware of the inner constraints between the parameters,
so this is especially problematic when the parametrization of the variable has more
parameters than the dimension of the measurement space, since there cannot exist

a unique result if ignoring the constraints.

The solution to these problems if to combine both approaches: the variable is
globally over-parametrized but local changes are represented with a representation
which behaves like a Euclidean space for small values, making possible to operate
like in R3. This is the aim of the theory of manifolds (see 2.3).

8.1 Manifolds as state representations

Definition 44 The dynamac’s state representation is a set of physical quanti-

ties, the specification of which completely determine the system’s temporal evolution.

The specific physical quantities which define the system’s state are not unique,
although their number (called the system order) it is (see [65]).

e Example. State for a defined three-dimensional movement.

S =TR? x SO(3) x R?, (8.1)

where three components are represented: position (R?), orientation (SO(3))
and velocity (R?).

In the simple case in which a state consists of a single component (for example, a
three-dimensional orientation), a state can be represented as a single manifold (see
2.3). If a state comprises of multiple different components, then the result is also a
manifold since the Cartesian product of the manifolds representing each individual

component returns another manifold.



8.2.  Encapsulation of manifolds 187

e Example. State S for a defined three-dimensional movement.

S =TR®x SO(3) x R?, (8.2)

where three components are represented: position (R?), orientation (SO(3))
and velocity (R?).

8.2 Encapsulation of manifolds

Manifolds are encapsulated when used in standard algorithms in order to avoid their
entire handling by the main algorithm. In other words, the goal is to help the esti-
mation algorithm handle the manifold as a black box (see [66]).

The algorithm can only access to the manifold in two different ways:

B: M xR™ — M, (8.3)

where 0 — z H J is a homeomorphism from a neighbourhood of 0 € R™ to a neigh-
bourhood of x € M.

The second way is to find the difference between the elements in M:

B:MxM— R, (8.4)

where y — y H x is the inverse of H.
Therefore:

cH(yBaz) =y, (8.5)

where z,y € M.
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Definition 45 A bijective function f defined around a topological space A and with
values in the space B is called a homeomorphism if the function and its inverse

are continuous. Obviously, if f is a homeomorphism, then f~' is another one.

Two topological spaces A and B are homeomorphic if there is an homeomor-
phism between A and B. When two spaces are homeomorphic is possible to exchange
them reasoning and demonstrating without modifying conclusions. In that case, those

two spaces are considered the same topological object (see [64]).

Hence, every point of a manifold M has a neighbourhood which can be mapped
bidirectionally to R", and the algorithm only sees a locally mapped part of M in R*

at any moment.

Figure 8.1: Local neighbourhood in the manifold M (here the unit sphere) mapped
into R™ (here R?, the plane).

As 0 — x H is supposed to be a homeomorphism, the dimension f M has to be
m. In addition, as the domain of the homeomorphism is a neighbourhood of 0, then
xHO ==z
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The main advantage of this approach is that most standard algorithms working
on R™ can now work in the same way on M, after replacing + with H when adding
small updates to the state, and — with H when calculating the difference between

two states.

Moreover, algorithms do not have to deal with singularities or denormalized over-
parametrizations and, after adapting the algorithm, it is not necessary to make

further adaptations.

8.2.1 Summary of properties
Given a H-manifold and an open neighbourhood V' C R™ of 0 (see [67]):
1. 0 — x H 6 must be smooth on R"
2. Vx € M, y — yBx must be smooth on z 'V
3. 2HO=2
4. Vye M: zB (yBz) =y
5. VoeV: (xBHo)Bx=0

6. V51,52 S R™: H(I H (51) = (.I‘ H (52)” S H61 — (52”

The operators H and H allow a generic algorithm to modify and compare man-
ifold states as if they were flat vectors and they can do it without knowing about

the internal structure of the manifold, which works as a black box for the algorithm.

It is needed the operators to be smooth to make limits and derivatives of o
correspond to limits and derivatives of x H §, something vital for any estimation
algorithm. Finally, it is important to note that it is not required x H ¢ or y Hy to

be smooth in z.
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8.2.1.1 Consequences

e The neutral element of H is 0.

e The fourth axiom ensure that from an element z, every other element y € M

can be reached via H, making in this way 0 — x H ¢ surjective.

e The fifth axiom makes  — zH0 injective on V', so the range of perturbations for
the parametrization by H is unique. H and boxminus create a local vectorized
view of the state space. Intuitively x is a reference point which defines the
center of a neighbourhood in the manifold. Thus, also the coordinate system
of § in the part of R” onto which the local neighbourhood in the manifold is
mapped.

e The sixth axiom allows to define a metric: the real distance d(z 8 d;, zHds) is

less or equal to the distance [|§; — d2| in the parametrization.

Figure 8.2: Graph to exemplify that the distance between x H ; and x H d,, repre-
sented with the dashed line, is less or equal to the distance in the parametrization
around x, which is represented with the dotted line.
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8.2.2 Generic definition

The way to define z B is to choose a chart (see 2.3.1.1) including z, within which
a vector ¥ can be added, and project the result back to M (as it is shown in figure
9.1). On the other hand, y Hz does the inverse of the previous operation finding the
value y in a chart including = and getting its coordinates. The choice of the chart

has to be determined by z.

Given ¢, as the chosen chart around z, it is possible to define:

v B0 = ¢, (62(2)0) (8.6)
yB = ¢.(y) — dulx) (8.7)

This definitions can also be proving in the following way, demonstrating the

equation 8.5:

2B (yBa) = 28 (6a(y) — 6u(2)) > (8.5)
cB(yBx) =, (¢:(y) + 02(y) — ¢u(x)) = (8.9)
cB(yBz) =9, (¢:(y) =y (8.10)

8.3 Examples

8.3.1 Manifold approach to vector space R"

In this case, the H and H operators are planar projections of a planar space, so

vector addition and subtraction are implemented as follows:

cBéi=x+9 (8.11)
yBHr=y—=x (8.12)
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8.3.2 Manifold approach to SO(2)

The special group of rotations in the plane, SO(2) (see 3), can be described as the

set matrix which verify:

SO(2) := {R € R¥** R"R = RR" = I,y Ndet(R) = 1} (8.13)

At the same time, this group is also a subgroup of GL(n), the invertible matrices
using the standard multiplication. SO(2) has one DOF (degree of freedom) (see
5.1.2) and, as it has been studied in previous chapter, it can be parametrized by

using one variable:

SO(2) = {

cosl —sinb
sinfl  cosf

) withd € R} (8.14)

A single parametrization can be made defining:

GBI =0+ (8.15)
08~ :=¢(0 — ) (8.16)

where 6 is a single rotation angle, 7 is the value in a chart whose coordinates are sub-
)
tracted and ¢(J) = 0 — 27| 2+7T
T

to the interval (—m, ) in order to take into account that 6 4+ 2km represent the same

] is the normalization of the difference 08~y =60 — v
rotation for any integer k.

The procedure before must be developed manually in algorithms which do not

use a manifold approach.



Chapter 9
Conclusions

The report which has been developed combining different matters and methods, al-
lows the analysis of several systems with diverse usefulness and features. That is why
the task of distinguishing the most relevant points or of making interesting compar-
isons in relation to the way these systems work is very important when intending
to get a critical conclusion. This chapter, consequently, is intended to summarize
the points which are vital for the comprehension of the Inverse Kinematics problem
and simultaneously define the relationships between the procedures presented here.
Since it is not a lab work, it is not possible to include any analysis or obtained value
in a practical way. In lieu thereof, the analytical and compared information of the
studied theory is the best tool to acquire an useful knowledge about the contents

which have been discussed.

9.1 A world of rotations

The Cartesian plane is the most limited space where rotations make sense. Therefore,
it is first important to study this case to further understand the three-dimensional
world we live in. The group SO(2) (3) defines the meaning of rotations in the plane.
In contrast to higher dimensions, the main feature of bi-dimensional rotations is that
they have a commutative product due to the group being Abelian. This fact can be
checked making use of the methods for rotations in 2D, among which it is possible

to highlight rotation matrices and complex numbers.
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0) —sin(f
C?S( ) sin(0) , which apply a 6
sin(0)  cos(0)
rotation around a planar object. The determinant must be 1 in order not to distort

Rotation matrices are matrices by the form (

or reflect the object shape. On the other hand, complex numbers are based in Eu-
ler’s formula to group the different arguments (angles) in the exponential exponent,
getting the resultant rotation. This method requires the conversion from Cartesian

form to polar form and vice versa before and after being implemented.

In a similar way, the group rotations in 3D SO(3) (see 4) also defines all the
possible spatial rotations, but there are several methods to do it. The traditional
way consists of implementing different rotations independently around each axis,
defining the rotation matrix similarly to the bi-dimensional one but adapted to 3D
space, making the idea more intuitive. The most frequently used system of partial
rotations are Euler Angles, rotation matrices whose application order and axes may
vary depending on the convention which has been adopted (here the 3-1-3 case has
been explained, see ?7). The problem of this method is known as gimbal lock, which
implies the loss of a degree of freedom (any possible direction of rotation) when two
axes are lined up. This problem resides in the fact that finding a minimal three-
variable representation is not possible without ambiguity. Fortunately, to solve this
problem other kind of representations have been created. They act in higher spaces
but they remove this possibility. The two main methods of this sort are axis/angle
representation, which requires knowing the resultant direction of the rotation (by
using Euler Rodrigues’ formula) and the use of quaternions. Quaternions are an
extension of complex numbers to a four-dimensional one by the form Q = ¢y + iq; +
Jjq2 + kqs, and where the representation of the point is made by using the three

imaginary units. Hence, the rotation quaternion is defined as follows:

™

Q, = cos <§) + (vid + v2] + vgk) sin <g)
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The main advantage of quaternions over other kind of representations (like Euler
angles) is that they offer a solution to the singularity or gimbal lock problem,
already mentioned. The problem is solved by the rotation in a four-dimensional
space around an inertial fixed system, which gives the axis no possibility to alignment
(section 4.1.3).

Furthermore the quaternion system is very much compact and because of that it
requires less computational capacity than the representations angle/axis or Euler

angles, as it is possible to see in the following comparative graphs (see [32|):

Method Storage
Rotation matrices 9
Quaternions 4
Axis/angle 3

Table 9.1: Comparative graph about the storage requirements.

Method Multiplies | Add/Subtracts | Total operations
Rotation matrices 27 18 45
Quaternions 16 12 28

Table 9.2: Comparative graph detailing the comparison of rotation chaining opera-
tions.

Method Multiplies | Add/Subtracts | sin/cos | Total operations
Rotation matrices 9 6 0 15
Quaternions 15 15 0 30
Axis/angle 23 16 2 41

Table 9.3: Comparative graph detailing the vector rotating operations.
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9.2 The Inverse Kinematics problem

Furthermore, another three dimensions to define the possible translations must be
considered in addition to the previous three ones, resulting in an hexa-dimensional
space for those elements which can rotate and translate themselves freely in every
direction in space. In the field of robotics these elements, are named robotic joints.
The concept of kinematic chain as concatenation of joints and links (it may be easier
by thinking of it as an human arm) is important to realize that all the elements
which take part in the chain must be solved in order to get the end effector (the
endpoint) in the desired position. Moreover, a change in a joint affects all the joints

after it.

The Inverse Kinematics problem can be solved by geometric or algebraic method
if the chain is simple, but for most applications that becomes impossible. Due to
that reason, it is necessary to use iterative methods to minimize as much as possible
the error between the reached and the desired position when solving this system of
several equations with several variables. One of the most used procedures is the

Jacobian inversion, but it requires a considerable computational effort.

9.2.1 Numerical methods and other improvements

In order to reduce this computational effort to the minimum, the choice of the
optimization algorithm applied on the error function (comprises of several funtions
and variables) becomes of vital use for this method. There are some algorithms
to find the minimum, among the most important of which are the gradient descent,
Newton-Raphson, Gauss-Newton and the Levenberg-Marquardt algorithm. Gradient
descent is maybe the most intuitive one because it goes down in the direction of
the maximum slope until reaching a local minimum. On the other hand, Newton-
Raphson uses successive tangents to approach the root. This method has a faster
convergence but the initial estimation must be chosen carefully, because if the initial
point is far from the minimum, the method may not converge (a comparison bewteen

these algorithms can be seen in figure 7.6).
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Finally, Levenberg-Marquardt interpolates between Gauss-Newton method (a
Newton-Raphson adaptation but without using second-order derivatives) and gradi-
ent descent. When the current estimation is far from a local minimum, it behaves
like the gradient descent, and when it is close, like Gauss-Newton. This method is
widely considered as the best one, because it is always possible to find a minimum

and the convergence is faster and guaranteed.

In addition, another way of improving the algorithms is to work on the problem
by using encapsulation of manifolds. In this way, complex state representations
(which are not Euclidean) can be approached by finding a neighbourhood of the
point where another kind of algebra can be used without distorting the results. This
procedure, which is a kind of mapping, is used to solve the problem which appears
when the parametrization of the variable has more parameters than the dimension

of the measurement space, making it impossible to find an unique result.

Figure 9.1: Local neighbourhood in the manifold M (here the unit sphere) mapped
into R™ (here R?, the plane).

Taking into account all the mentioned problems, the best combination possible
is to use quaternions globally and the previous kind of mapping when local changes

are needed, operating them like in Euclidean spaces.
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9.3 Further study fields

As one can infer, Mathematics offers engineering an almost infinite field of possi-
bilities which are not difficult at all, so the possible ways of improving the current
methods are only a problem of man’s imagination, not an infrastructural one. Fol-
lowing along the same line as some of the studied chapters, probably the most clear
path to walk on consists of working on the optimization algorithms, because when
speaking about computational calculations, efficiency is as important as getting a
good result. In this way, studying the way algorithms work and thinking about new
ideas to get them better is a requirement in order to face the future, and Levenberg-
Marquart is a very good example of improvement by combining previous methods.
There are many possibilities of improving an algorithm: making the code more effi-

cient, parallelizing as much as possible, solving eventual errors, etc.

Another problem which has been treated is that non-Euclidean spaces may ap-
pear during local working, and this reason explains how mathematical tools become
vital to solve resulting problems. In this line, the field based on topological research
makes possible the task of finding a way out when the current system shows weak-
ness. Many problems have been solved so far by using new conceptions of space and
reality, as one can realize only by looking at quaternions. In addition, when dispos-
ing of many options to choose, the decision can be made reasonably depending on
the application, because the system features and the nature of the problem may re-
quire particular conditions. Mathematics allows the improvement of every imperfect

system, the only thing to do is to firstly imagine how to start this.

To conclude, while working in the computer science field, programming new ap-
plications related to Inverse Kinematics may result also interesting. Before starting
the analysis which has been developed, the previous idea was intended to find a way
of calibrating a robotic arm by using graph factors (see [68]). It would be interesting
to go other ways by using optimization algorithms in depth to make the range of
possible applications wider. Similarly to that preceding project, many others can be
thought of for improving systems or creating new uses for the current ones. As told

at the beginning, only imagination can set the limits to human progress.
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Appendix A

Conversions

A.1 2D rotations

A.1.1 From 2 x 2 rotation matrices to complex numbers

In order to rotate by complex numbers a given a vector v = (a, b)T, the first step to

follow is expressing it in Cartesian form, in this way:

v=(a,b) —v=a+ib (A1)

After that, it must be converted to Polar form, calculating the modulus and

argument of the vector in the complex plane:

b
lv| = sqrt(a® +b%) 6 = arctan <E> (A.2)

cos¢p —sincb)

The vector in Polar form is now v = |v]e?. Let be a rotation matrix |
sing  cosg

the equivalent expression when rotating with complex numbers is rot = €, so the

rotated complex vector in Polar form is vy = rot cdotv = |v|e’¢+9),
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A.1.2 From complex numbers to 2 x 2 rotation matrices

This process is the opposite of the previous one. Given a complex vector in Polar

form v = |v|e?, the way to find the Cartesian equivalence is using the Euler identity:

0

e = cosf + isinf. Hence:

v = |v|(cost + isinf) — v = (a,b), (A.3)

where a is the real part and b the imaginary one resulting from the product.

The rotation element rot = €@ is identical to the 2 x 2 matrix (

cosp —sing
sing cosd |’
as it was seen before. After that, the way of acting is the usual one.

A.2 3D rotations

The following methods are valid for a right-hand system. The way to

adapt them to a left-hand system will be explained in.

A.2.1 From rotation matrix to Euler angles

The Fuler angles can be extracted from the rotation matrix R by inspecting the

rotation matrix in analytical form.

Using the x-convention (3-1-1), which have been used in this document, the

Fuler angles can be deduced as:
R
¢ = arctan (i) (A.4)
Ry

© = arccosRs3 (A.5)

U = —arctan (%) (A.6)
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Some considerations must be taken into account:

e There are generally two solutions in (—m, 7]3. The above formula works only
when © is from the interval [0, 11)3.

e In case R33 = 0, ®,V shall be derived from Rii, Ris.

e There are many solutions outside of the interval (—m, 7]3.

A.2.2 From Euler angles to rotation matrix

The rotation matrix R is generated from the Euler angles by multiplying the three
matrices built by rotations about the axes. The order depends on the convention

used. In case of the x-convention (3-1-3):

R(®,0,V) = R(V,2)- R(O,z) - R(®, 2) (A.7)

cosVcosd — cosOsin®sinV cosVsin® 4+ cosOcos®PcosV  sinVsin®

R(®,0,¥) = | —sinWcos® — cosOsin®cos¥ —sin¥sin® + cosOcosPcos¥ cos¥sin®
sinBsin® —sin®cos® cos©
(A.8)

A.2.3 From rotation matrix to Euler axis/angle

If the Euler angle 6 is not a multiple of 7, the Euler axis # = [r,,r,,7.]7 and the

angle 6 can be computed from the elements of the rotation matrix R in the following

way:
1
0 = arccos (§[R11 + Ros + R33 — 1]) (A.9)
R3o — Ros Ri3 — Ra; Ro1 — Ry
" 2sinb "y 2sinb e 2sinb (A.10)
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A.2.4 From Euler axis/angle to rotation matrix

The matrix for a rotation by an angle 6 around an axis in the direction of

F=[ry,ry, TZ]T is defined as:

cost + 12(1 — cosl)  ryry(1 —cosh) —rysind r.r.(1 — cost) + ry,sind

R=|ryre(1 —cosb) +r.sinf  cosh +r.(1 —cosf)  ryr.(1—cosh) — rysind
r.1:(1 — cost) — rysind r,r,(1 — cosl) + rysinf  cosf 4+ r2(1 — cosh)
(A.11)
A.2.5 From rotation matrix to quaternions
Given a rotation matrix R, it can be converted to a quaternion
Q = qo +1iq1 + jgo + kg3 in the way that follows:
1
qo = 5\/1 + i1 + Roo + B3 (A.12)
1
Q= 4—%(5’32 — Ra3) (A.13)
1
q2 = 4—%(313 — Ry) (A.14)
1
q3 = 4—%(321 — Rys) (A.15)

A.2.6 From quaternions to rotation matrix

On the other hand, the rotation matrix corresponding to the quaternion

Q = qo +1iq1 + jg2 + kg3 is given by:

B+E—6G -G 2092 — 29093 2q193 + 2q0q2

R = 20003 + 201> @ — G+ B — 45 —2q0¢1 + 2¢243 (A.16)

—2q0g2 + 2q193  200q1 + 20203 @@ — ¢ — G5 + 43
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A.2.7 From Euler angles to quaternions

Considering the x-convention (3-1) in Euler angles, the quaternion

Q = qo +iq1 + jgo + kg3 can be computed from (®,0, V) in the following way:

P+ Pst ©
go = cos T s (2 (A.17)
2 2
® — Psi e
¢ = cos ( 5 sz) sin (5) (A.18)
d — Psi C)
g2 = Sin ( i SZ) sin <§) (A.19)
P + Pst ©
g3 = sin ( il SZ) cos (—) (A.20)
2 2
(A.21)
A.2.8 From quaternions to Euler angles
In the same way, given the rotation quaternion ) = qo + iq1 + jqo2 + kqs,
the x-convention (3-1-3) of Euler angles (®,©, V) van be computed by:
® = arctan ( Q195 + G260 ) (A.22)
—(q203 — q190)
O = arccos(qy — ¢f — 45 + ¢3) (A.23)
¥ = arctan (220 ) (A.21)
4293 + q1G4

A.2.9 From Euler axis/angle to quaternions

Given the Euler axis 7 and the angle 6, the associated quaternion

Q = qo +iq1 + jqo + kg3 can be calculated as:

0 . (0 .. [0 .. (0
qo = cos (5) g1 = T2Sin (5) g2 = Tysin (5) g3 = T.8in (§> (A.25)
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A.2.10 From quaternions to Euler axis/angle

The opposite conversion, from a rotation quaternion ) = qo + 1q1 + jg2 + kqs, to an

Euler axis/angle system with axis 7# and angle 6, can be expressed as:
. q
= (A.26)
lql]
where ¢ =iq1 + jgo + ks

0 = 2arccos(qo) (A.27)



Appendix B

Coordinate systems

Since the Euclidean space has no preferred origin or direction, a coordinate system

must be created in order to assign numerical values to points and objects in the space.

In the three-dimensional space, the right-handed and the left-handed coordinate

systems are used to describe positions. The main properties they have are:

e Any right-handed coordinate system can be converted to any other right-

handed coordinate system by rotating it.

e Any left-handed coordinate system can be converted to any other right-handed

coordinate system by rotating it.

e A right-handed coordinate system cannot be converted to a left-handed coor-

dinate system by rotating it.

e A right-handed coordinate system can be converted to a left-handed coordinate

system by using the method which is explained in B.3.
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B.1 Right-handed coordinate system

It is the most used system, and the system which has been applied in this document.

In a right-handed coordinate system:
e +x is placed in the right direction.
e +y is placed in the up direction.

e +2 is placed in the direction from the plane of the page.

B.2 Left-handed coordinate system

This system is not so used as the previous one, but it is the system adopted for

Robolab (Universidad de Extremadura). In a left-handed coordinate system:

e +x is placed in the left direction.
e +y is placed in the up direction.

e +z is placed in the direction from the plane of the page.

Left Handed Coordinates Right Handed Coordinates

Figure B.1: Comparative between right-handed and left-handed coordinate systems:
x-axis in red, y-axis in green and z-axis in blue.
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B.3 Conversion from Right-Handedness to
Left-Handedness

B.3.1 Conversion of points

Looking at the two systems defined, the only difference between them is the x-axis
orientation. As a consequence, only changing the direction of this axis is possible to
convert a system in the another one: a point (z,y, z) in the right-handed coordinate

system is converted to a point (—z,y, z) in the left-handed system.

In the left-handed coordinate system, the x-component must be negative, so

expressing this conversion in matrix-vector form the result is:

—x -1 0 0 x
Pleft = Yy = 0 10 Yy | = DxPrighta (Bl)
z 0 01 z
-1 0 0
where D, is defined to be the diagonal matrix D, = | 0 1 0| used when con-
0 0 1

verting from a system to the another one.

B.3.2 Conversion of rotations

In this case, a right-handed point P, = (x,y,2) must be transformed to a left-

handed one Py = (2,1, 2'), where the effect of a rotation is taken into account.

As it has been seen in 4, a rotation over a coordinate axis is written in the
following way:

Pl

right

== RPrighty (BQ)

where R is the rotation matrix, whose shape depends on the axis around which the

rotation is implemented.
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Considering that the conversion of the point after the rotation must be put into

practice as before:

Pl/eft - D$P7iight (B3)

Then:

Pl/eft = DSEP?{ight = D, RPrignt (B.4)

In the same way, as the conversion is equivalent in both sides, P.ignt = Dy Pyt

Hence:

-Pl/eft = DmRDa:-Pleft = (D:ERDx)-Pleft = R/-Pleft, (B5)

where the new rotation matrix is R’ = D,RD,, where R is the rotation matrix in
the original system, whose shape depends on the axis around which the rotation is

implemented.



Appendix C

MATLAB Code

C.1 Rotation matrices in 2D

1: function final vector = rotation(vx,vy,theta)

2. $=]0:1:40]*2%pi,/40;
3: x1l=cos(s);

4:  yl=sin(s);

plot(x1,y1,r);
arrow ([0 0],[vx vy]);
xlabel("x-axis’);

ylabel(’y-axis’);

axis equal
10:  vec=|vx;vyl;
11:  rot=[cos(theta) -sin(theta); sin(theta) cos(theta)];

12:  vecR—=rot*vec;

13:  vx=vecR(L,1);
14:  vy=vecR(2,1);
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15:
16:
17:
18:
19:
20:
21:

22

pause;
figure;
plot(x1,y1,’r");
arrow ([0 0],[vx vy]);
xlabel ("x-axis’);
ylabel(’y-axis’);

axis equal

. final _vector=[vx,vyl;

C.2 Homogeneous transformation matrices in 2D

10:

11:
12:
13:

14:
15:

. function final vector = rotran(vx, vy, theta, tx, ty)
vz=1;

s—[0:1:40[*2*pi/40;

x1=cos(s);

yl=sin(s);

plot(x1,y1,’r");
arrow ([0 0],[vx vy]);
xlabel ("x-axis’);
ylabel(’y-axis’);

axis equal

vec=|vx;vy;vz|;
Tran=[cos(theta) -sin(theta) tx; sin(theta) cos(theta) ty; 0 0 1];

vecR—Tran*vec;

vx=vecR(1,1);
vy—vecR(2,1);



C.

3. Rotation matrices in 3D

165

16:
17:
18:
19:
20:
21:
22:

23

pause;
figure;
plot(x1,y1,);
arrow ([0 0],[vx vy]);
xlabel("x-axis’);
ylabel(’y-axis’);

axis equal

. final _vector=[vx,vy];

C.3 Rotation matrices in 3D

10:
11:
12:
13:
14:
15:

: function final vector = rotation3(vx, vy, vz, psi, theta, phi)

s—[0:1:40]*2*pi /40
x1=cos(s);
yl=sin(s);
z1=cos(s);
zero=[0:1:40]*0;

hold on
plot3(x1,y1,zero,’r’);
plot3(zero,y1,21,'r’");
arrow([0 0 0],[vx vy vz]);
xlabel("x-axis’);
ylabel("y-axis’);
zlabel(’z-axis’);

axis equal

hold off
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16: %% Psi (rotation around the x-axis)

7. vec=[vx;vy;vzl;

18:  Rot_ psi=|cos(psi) -sin(psi) 0; sin(psi) cos(psi) 0; 0 0 1];
19:  vecR=Rot_psi*vec;

20:  vx=vecR(L,1);
21:  vy=vecR(2,1);
22:  vz=vecR(3,1);

23: pause;

24:  figure;

25:  hold on

26:  plot3(x1,yl,zero,’r’);
27:  plot3(zero,y1,z1,'r");
28:  arrow([0 0 0],[vx vy vz]);
29:  xlabel(’x-axis’);

30:  ylabel(’y-axis’);

31:  zlabel(’z-axis’);

32:  axis equal

33:  hold off

34: %% Theta (rotation aroud the y-axis)

35:  vec=|vx;vy;vz;

36:  Rot_theta=[cos(theta) 0 sin(theta); 0 1 0; -sin(theta) 0 cos(theta)];
37:  vecR=Rot_theta*vec;

38:  vx=vecR(1,1);
39:  vy=vecR(2,1);
40:  vz=vecR(3,1);

41:  pause;

42:  figure;
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43:  hold on

44:  plot3(x1,yl,zero,’1’);

45:  plot3(zero,yl,z1,r");

46:  arrow(]0 0 0],[vx vy vz]);
47:  xlabel(’x-axis’);

48:  ylabel(’y-axis’);

49:  zlabel('z-axis’);

50:  axis equal

51:  hold off

52: %% Phi (rotation around the z-axis)

53:  vec=|vx;vy;vz|;

54:  Rot_ phi=[cos(phi) -sin(phi) 0; sin(phi) cos(phi) 0; 0 0 1J;
55:  vecR=Rot_ phi*vec;

56:  vx=vecR(1,1);

57 vy=vecR(2,1);

58:  vz=vecR(3,1);

99: pause;

60:  figure;

61:  hold on

62:  plot3(x1,yl,zero,’1’);
63:  plot3(zero,yl,z1,'r");
64:  arrow(]0 0 0],[vx vy vz]);
65:  xlabel(’x-axis’);

66:  ylabel(’y-axis’);

67:  zlabel('z-axis’);

68:  axis equal

69:  hold off

70: final vector=|vx,vy,vz;
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C.4 Homogeneous transformation matrices in 3D

1: function final vector = rotran3(vx, vy, vz, psi, tht, phi, tx, ty, tz)
2. $=]0:1:40]*2%pi,/40;

3: x1=cos(s);

4:  yl=sin(s);

5. zl=cos(s);

6:  zero=[0:1:40]*0;

7:  hold on

8:  plot3(x1,yl,zero,’r’);

9:  plot3(zero,yl,z1,’r’);

10:  arrow([0 0 0],|vx vy vz]);
11:  xlabel("x-axis’);

12:  ylabel(’y-axis’);

13:  zlabel(’z-axis’);

14:  axis equal

15:  hold off

16: if  psi =0 then %% Rotation around the x-axis

17: vec=[vx;vy;vz;1];

18: Tran_psi=[1 0 0 tx; 0 cos(psi) -sin(psi) ty; 0 sin(psi) cos(psi) tz; 0 0 0 1;
19: vecR=Tran _psi*vec;

20: vx=vecR(1,1);

21: vy=vecR(2,1);

22: vz=vecR(3,1);

23: pause;

24: figure;
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25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

35:
36:
37
38:

39:
40:
41:

42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:

hold on
plot3(x1,y1,zero,’r’);
plot3(zero,yl,z1,1");
arrow ([0 0 0],[vx vy vz]);
xlabel ("x-axis’);
ylabel(’y-axis’);
zlabel(’z-axis’);

axis equal

hold off

end if

if

tht =0 then %% Rotation around the y-axis

vec=|vx;vy;vz;1];

Tran _tht=[cos(tht) 0 sin(tht) tx; 0 1 0 ty; -sin(tht) 0 cos(tht) tz; 0 0 0 1];

vecR=Tran _tht*vec;

vx=vecR(1,1);
vy=vecR(2,1);
vz=vecR(3,1);

pause;

figure;

hold on
plot3(x1,y1,zero,’r’);
plot3(zero,y1l,z1,1");
arrow([0 0 0],[vx vy vz]);
xlabel ("x-axis’);
ylabel("y-axis’);
zlabel (’z-axis’);

axis equal

hold off

53: end if
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54: if  phi =0 then %% Rotation around the z-axis

55: vec=|vx;vy;vz;1];

56: Tran_ phi=[cos(phi) -sin(phi) 0 tx; sin(phi) cos(phi) 0 ty; 00 1 tz; 00 0 1];
57 vecR=Tran _phi*vec;

58: vx=vecR(1,1);

59: vy=vecR(2,1);

60: vz=vecR(3,1);

61: pause;

62: figure;

63: hold on

64: plot3(x1,y1,zero,’r’);

65: plot3(zero,y1,21,’r");

66: arrow([0 0 0],[vx vy vz]);
67: xlabel("x-axis’);

68: ylabel("y-axis’);

69: zlabel(’z-axis’);

70: axis equal

71: hold off

72: end if

73: final vector=|vx,vy,vz|;
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